

MOTION CONTROLLER

Qseries

SV13/SV22 (Motion SFC)

Q173CPU(N)

Q172CPU(N)

Programming Manual

(Please read these instructions before using this equipment.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.

These precautions apply only to this product. Refer to the Q173CPU(N)/Q172CPU(N) Users manual for a description of the Motion controller safety precautions.

In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight personal injury or physical damage.

Depending on circumstances, procedures indicated by CAUTION may also be linked to serious results.

In any case, it is important to follow the directions for usage.

Please save this manual to make it accessible when required and always forward it to the end user.

For Safe Operations

1. Prevention of electric shocks

⚠ DANGER

- Never open the front case or terminal covers while the power is ON or the unit is running, as this may lead to electric shocks.
- Never run the unit with the front case or terminal cover removed. The high voltage terminal and charged sections will be exposed and may lead to electric shocks.
- Never open the front case or terminal cover at times other than wiring work or periodic inspections even if the power is OFF. The insides of the Motion controller and servo amplifier are charged and may lead to electric shocks.
- Completely turn off the externally supplied power used in the system before mounting or removing the module, performing wiring work, or inspections. Failing to do so may lead to electric shocks.
- When performing wiring work or inspections, turn the power OFF, wait at least ten minutes, and then check the voltage with a tester, etc. Failing to do so may lead to electric shocks.
- Be sure to ground the Motion controller, servo amplifier and servomotor. (Ground resistance:
 100 Ω or less) Do not ground commonly with other devices.
- The wiring work and inspections must be done by a qualified technician.
- Wire the units after installing the Motion controller, servo amplifier and servomotor. Failing to do so may lead to electric shocks or damage.
- Never operate the switches with wet hands, as this may lead to electric shocks.
- Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to electric shocks.
- Do not touch the Motion controller, servo amplifier or servomotor terminal blocks while the power is ON, as this may lead to electric shocks.
- Do not touch the built-in power supply, built-in grounding or signal wires of the Motion controller and servo amplifier, as this may lead to electric shocks.

2. For fire prevention

- Install the Motion controller, servo amplifier, servomotor and regenerative resistor on incombustible. Installing them directly or close to combustibles will lead to fire.
- If a fault occurs in the Motion controller or servo amplifier, shut the power OFF at the servo amplifier's power source. If a large current continues to flow, fire may occur.
- When using a regenerative resistor, shut the power OFF with an error signal. The regenerative resistor may abnormally overheat due to a fault in the regenerative transistor, etc., and may lead to fire
- Always take heat measures such as flame proofing for the inside of the control panel where the servo amplifier or regenerative resistor is installed and for the wires used. Failing to do so may lead to fire.
- Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this
 may lead to fire.

3. For injury prevention

∆CAUTION

- Do not apply a voltage other than that specified in the instruction manual on any terminal.
 Doing so may lead to destruction or damage.
- Do not mistake the terminal connections, as this may lead to destruction or damage.
- Do not mistake the polarity (+ /), as this may lead to destruction or damage.
- Do not touch the heat radiating fins of controller or servo amplifier, regenerative resistor and servomotor, etc., while the power is ON and for a short time after the power is turned OFF. In this timing, these parts become very hot and may lead to burns.
- Always turn the power OFF before touching the servomotor shaft or coupled machines, as these parts may lead to injuries.
- Do not go near the machine during test operations or during operations such as teaching.
 Doing so may lead to injuries.

4. Various precautions

Strictly observe the following precautions.

Mistaken handling of the unit may lead to faults, injuries or electric shocks.

(1) System structure

≜CAUTION

- Always install a leakage breaker on the Motion controller and servo amplifier power source.
- If installation of an electromagnetic contactor for power shut off during an error, etc., is specified in the instruction manual for the servo amplifier, etc., always install the electromagnetic contactor.
- Install the emergency stop circuit externally so that the operation can be stopped immediately and the power shut off.
- Use the Motion controller, servo amplifier, servomotor and regenerative resistor with the correct combinations listed in the instruction manual. Other combinations may lead to fire or faults.
- Use the Motion controller, base unit and motion module with the correct combinations listed in the instruction manual. Other combinations may lead to faults.
- If safety standards (ex., robot safety rules, etc.,) apply to the system using the Motion controller, servo amplifier and servomotor, make sure that the safety standards are satisfied.
- Construct a safety circuit externally of the Motion controller or servo amplifier if the abnormal operation of the Motion controller or servo amplifier differ from the safety directive operation in the system.
- In systems where coasting of the servomotor will be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use dynamic brakes.
- Make sure that the system considers the coasting amount even when using dynamic brakes.
- In systems where perpendicular shaft dropping may be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use both dynamic brakes and electromagnetic brakes.

⚠CAUTION

- ◆ The dynamic brakes must be used only on errors that cause the forced stop, emergency stop, or servo OFF. These brakes must not be used for normal braking.
- The brakes (electromagnetic brakes) assembled into the servomotor are for holding applications, and must not be used for normal braking.
- The system must have a mechanical allowance so that the machine itself can stop even if the stroke limits switch is passed through at the max. speed.
- Use wires and cables that have a wire diameter, heat resistance and bending resistance compatible with the system.
- Use wires and cables within the length of the range described in the instruction manual.
- The ratings and characteristics of the parts (other than Motion controller, servo amplifier and servomotor) used in a system must be compatible with the Motion controller, servo amplifier and servomotor.
- Install a cover on the shaft so that the rotary parts of the servomotor are not touched during operation.
- There may be some cases where holding by the electromagnetic brakes is not possible due to the life or mechanical structure (when the ball screw and servomotor are connected with a timing belt, etc.). Install a stopping device to ensure safety on the machine side.

(2) Parameter settings and programming

- Set the parameter values to those that are compatible with the Motion controller, servo amplifier, servomotor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
- The regenerative resistor model and capacity parameters must be set to values that conform to the operation mode, servo amplifier and servo power supply module. The protective functions may not function if the settings are incorrect.
- Set the mechanical brake output and dynamic brake output validity parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the stroke limit input validity parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
- Set the servomotor encoder type (increment, absolute position type, etc.) parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
- Set the servomotor capacity and type (standard, low-inertia, flat, etc.) parameter to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the servo amplifier capacity and type parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Use the program commands for the program with the conditions specified in the instruction manual.

MCAUTION

- Set the sequence function program capacity setting, device capacity, latch validity range, I/O assignment setting, and validity of continuous operation during error detection to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Some devices used in the program have fixed applications, so use these with the conditions specified in the instruction manual.
- The input devices and data registers assigned to the link will hold the data previous to when communication is terminated by an error, etc. Thus, an error correspondence interlock program specified in the instruction manual must be used.
- Use the interlock program specified in the intelligent function module's instruction manual for the program corresponding to the intelligent function module.

(3) Transportation and installation

⚠ CAUTION

- Transport the product with the correct method according to the mass.
- Use the servomotor suspension bolts only for the transportation of the servomotor. Do not transport the servomotor with machine installed on it.
- Do not stack products past the limit.
- When transporting the Motion controller or servo amplifier, never hold the connected wires or cables
- When transporting the servomotor, never hold the cables, shaft or detector.
- When transporting the Motion controller or servo amplifier, never hold the front case as it may fall off.
- When transporting, installing or removing the Motion controller or servo amplifier, never hold the edges.
- Install the unit according to the instruction manual in a place where the mass can be withstood.
- Do not get on or place heavy objects on the product.
- Always observe the installation direction.
- Keep the designated clearance between the Motion controller or servo amplifier and control panel inner surface or the Motion controller and servo amplifier, Motion controller or servo amplifier and other devices.
- Do not install or operate Motion controller, servo amplifiers or servomotors that are damaged or that have missing parts.
- Do not block the intake/outtake ports of the Motion controller, servo amplifier and servomotor with cooling fan.
- Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil enter the Motion controller, servo amplifier or servomotor.
- The Motion controller, servo amplifier and servomotor are precision machines, so do not drop or apply strong impacts on them.
- Securely fix the Motion controller, servo amplifier and servomotor to the machine according to the instruction manual. If the fixing is insufficient, these may come off during operation.

- Always install the servomotor with reduction gears in the designated direction. Failing to do so may lead to oil leaks.
- Store and use the unit in the following environmental conditions.

Environment	Conditions		
Environment	Motion controller/Servo amplifier	Servomotor	
Ambient temperature	According to each instruction manual.	0°C to +40°C (With no freezing) (32°F to +104°F)	
Ambient humidity	According to each instruction manual.	80% RH or less (With no dew condensation)	
Storage temperature	According to each instruction manual.	-20°C to +65°C (-4°F to +149°F)	
Atmosphere	Indoors (where not subject to direct sunlight). No corrosive gases, flammable gases, oil mist or dust must exist		
Altitude	1000m (3280.84ft.) or less above sea level		
Vibration	According to each instruction manual		

- When coupling with the synchronous encoder or servomotor shaft end, do not apply impact such as by hitting with a hammer. Doing so may lead to detector damage.
- Do not apply a load larger than the tolerable load onto the synchronous encoder and servomotor shaft. Doing so may lead to shaft breakage.
- When not using the module for a long time, disconnect the power line from the Motion controller or servo amplifier.
- Place the Motion controller and servo amplifier in static electricity preventing vinyl bags and store.
- When storing for a long time, please contact with our sales representative.
 Also, execute a trial operation.

▲CAUTION

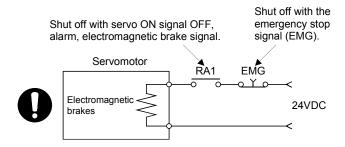
- Correctly and securely wire the wires. Reconfirm the connections for mistakes and the terminal screws for tightness after wiring. Failing to do so may lead to run away of the servomotor.
- After wiring, install the protective covers such as the terminal covers to the original positions.
- Do not install a phase advancing capacitor, surge absorber or radio noise filter (option FR-BIF) on the output side of the servo amplifier.
- Correctly connect the output side (terminal U, V, W) and ground. Incorrect connections will lead
 the servomotor to operate abnormally.
- Do not connect a commercial power supply to the servomotor, as this may lead to trouble.
- Do not mistake the direction of the surge absorbing diode installed on the DC relay for the control signal output of brake signals, etc. Incorrect installation may lead to signals not being output when trouble occurs or the protective functions not functioning.
- Servo amplifier

 VIN
 (24VDC)

 Control output signal
- Do not connect or disconnect the connection cables between each unit, the encoder cable or PLC expansion cable while the power is ON.
- Securely tighten the cable connector fixing screws and fixing mechanisms. Insufficient fixing may lead to the cables combing off during operation.
- Do not bundle the power line or cables.

(5) Trial operation and adjustment

- Confirm and adjust the program and each parameter before operation. Unpredictable movements may occur depending on the machine.
- Extreme adjustments and changes may lead to unstable operation, so never make them.
- When using the absolute position system function, on starting up, and when the Motion controller or absolute value motor has been replaced, always perform a home position return.


⚠ CAUTION

- Immediately turn OFF the power if smoke, abnormal sounds or odors are emitted from the Motion controller, servo amplifier or servomotor.
- Always execute a test operation before starting actual operations after the program or parameters have been changed or after maintenance and inspection.
- Do not attempt to disassemble and repair the units excluding a qualified technician whom our company recognized.
- Do not make any modifications to the unit.
- Keep the effect or electromagnetic obstacles to a minimum by installing a noise filter or by using wire shields, etc. Electromagnetic obstacles may affect the electronic devices used near the Motion controller or servo amplifier.
- When using the CE Mark-compliant equipment, refer to the "EMC Installation Guidelines" (data number IB(NA)-67339) for the Motion controllers and refer to the corresponding EMC guideline information for the servo amplifiers, inverters and other equipment.
- Use the units with the following conditions.

Item	Conditions		
Input power	According to each instruction manual.		
Input frequency	According to each instruction manual.		
Tolerable momentary power failure	According to each instruction manual.		

(7) Corrective actions for errors

- If an error occurs in the self diagnosis of the Motion controller or servo amplifier, confirm the check details according to the instruction manual, and restore the operation.
- If a dangerous state is predicted in case of a power failure or product failure, use a servomotor with electromagnetic brakes or install a brake mechanism externally.
- Use a double circuit construction so that the electromagnetic brake operation circuit can be operated by emergency stop signals set externally.

- If an error occurs, remove the cause, secure the safety and then resume operation after alarm release.
- The unit may suddenly resume operation after a power failure is restored, so do not go near the machine. (Design the machine so that personal safety can be ensured even if the machine restarts suddenly.)

∴ CAUTION

- Perform the daily and periodic inspections according to the instruction manual.
- Perform maintenance and inspection after backing up the program and parameters for the Motion controller and servo amplifier.
- Do not place fingers or hands in the clearance when opening or closing any opening.
- Periodically replace consumable parts such as batteries according to the instruction manual.
- Do not touch the lead sections such as ICs or the connector contacts.
- Before touching the module, always touch grounded metal, etc. to discharge static electricity from human body. Failure to do so may cause the module to fail or malfunction.
- Do not directly touch the module's conductive parts and electronic components. Touching them could cause an operation failure or give damage to the module.
- Do not place the Motion controller or servo amplifier on metal that may cause a power leakage or wood, plastic or vinyl that may cause static electricity buildup.
- Do not perform a megger test (insulation resistance measurement) during inspection.
- When replacing the Motion controller or servo amplifier, always set the new module settings correctly.
- When the Motion controller or absolute value motor has been replaced, carry out a home position return operation using one of the following methods, otherwise position displacement could occur.
 - 1) After writing the servo data to the Motion controller using programming software, switch on the power again, then perform a home position return operation.
 - 2) Using the backup function of the programming software, load the data backed up before replacement.
- After maintenance and inspections are completed, confirm that the position detection of the absolute position detector function is correct.
- Do not drop or impact the battery installed to the module.
 Doing so may damage the battery, causing battery liquid to leak in the battery. Do not use the dropped or impacted battery, but dispose of it.
- Do not short circuit, charge, overheat, incinerate or disassemble the batteries.
- The electrolytic capacitor will generate gas during a fault, so do not place your face near the Motion controller or servo amplifier.
- The electrolytic capacitor and fan will deteriorate. Periodically replace these to prevent secondary damage from faults. Replacements can be made by our sales representative.
- Lock the control panel and prevent access to those who are not certified to handle or install electric equipment.
- Do not burn or break a module and servo amplifier. Doing so may cause a toxic gas.

(9) About processing of waste

When you discard Motion controller, servo amplifier, a battery (primary battery) and other option articles, please follow the law of each country (area).

⚠CAUTION

- This product is not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to forestall serious accidents when it is used in facilities where a breakdown in the product is likely to cause a serious accident.

(10) General cautions

• All drawings provided in the instruction manual show the state with the covers and safety partitions removed to explain detailed sections. When operating the product, always return the covers and partitions to the designated positions, and operate according to the instruction manual.

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	* The manual number is given on the bottom left of the back cover. Revision
Jun., 2002	IB(NA)-0300042-A	
Feb., 2004		[Addition model]
1 60., 2004	IB(IVA)-0300042-B	Q173CPUN-T/Q172CPUN-T, A31TU-D3K13/A31TU-DNK13, Q172EX-S1, Q173PX-S1, Q00CPU, Q01CPU, 64AD, Q68ADV, Q68ADI, Q62DA, Q64DA, Q68DAV, Q68DAI, Q170TUD3CBL3M, Q170TUDNCBL3M, Q170TUDNCBL3M, Q170TUTM, A31TUD3TM, FR-V5□0-□, Software for SV43
		[Addition function] For WindowsXP, Home position return function, ROM operation function, Online change function [Additional correction/partial correction] Safety precautions, About processing of waste, Startup slow of the Multiple CPU system, User file list, Error code list, etc. [partial correction]
Mar., 2006	IB(NA)-0300042-C	[Addition model] Q62P, Q172EX-S2, Q172EX-S3, Q170ENC [Addition function] Cam axis command signal, Smoothing clutch complete signal, Gain changing signal, Real mode axis information register, Motion SFC instruction "FMOV", Bit device setting by Motion SFC instruction, Security function
	ID (NA) 2222242 D	[Additional correction/partial correction] Safety precautions, User file list, Error code list, Warranty, Manual model code (1CT781→1XB781), etc.
Apr., 2010	IB(NA)-0300042-D	[Additional correction/partial correction] Safety precautions, "1.6.1 I/O No. for I/O modules and intelligent function modules", Warranty

Japanese Manual Version IB(NA)-0300023

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

INTRODUCTION

Thank you for choosing the Q173CPU(N)/Q172CPU(N) Motion Controller. Please read this manual carefully so that equipment is used to its optimum.

CONTENTS

Safety Precautions	A- 1
Revisions	A-11
Contents	A-12
About Manuals	A-18
1. OVERVIEW	1- 1 to 1-96
1.1 Overview	1- 1
1.2 Features	1- 3
1.2.1 Features of Motion CPU	1- 3
1.2.2 Basic specifications of Q173CPU(N)/Q172CPU(N)	1- 6
1.2.3 Operation control/transition control specifications	1- 9
1.2.4 Differences between Q173CPU(N)/Q172CPU(N)and A173UHCPU/A172SHCPUN	1-13
1.2.5 Positioning dedicated devices/special relays/special registers	1-15
1.3 Hardware Configuration	1-55
1.3.1 Motion system configuration	
1.3.2 Q173CPU(N) System overall configuration	1-61
1.3.3 Q172CPU(N) System overall configuration	
1.3.4 Software packages	1-65
1.3.5 Restrictions on motion systems	
1.4 Multiple CPU System	1-71
1.4.1 Overview	
1.4.2 Installation of PLC CPU and Motion CPU	1-72
1.4.3 Precautions for using Q series I/O modules and intelligent function modules	
1.4.4 Modules subject to installation restrictions	1-74
1.4.5 Processing time of the Multiple CPU system	1-75
1.4.6 How to reset the Multiple CPU system	
1.4.7 Processing at a CPU DOWN error occurrence by a PLC CPU or Q173CPU(N)/Q1720	
1.5 System Settings	1-80
1.5.1 System data settings	
1.5.2 Common system parameters	
1.5.3 Individual parameters	
1.6 Assignment of I/O No.	
1.6.1 I/O No. for I/O modules and intelligent function modules	
1.6.2 I/O No. of PLC CPU and Q173CPU(N)/Q172CPU(N)	
1.6.3 Setting I/O No.	1-96
2. STARTING UP THE MULTIPLE CPU SYSTEM	2- 1 to 2- 2
2.1 Startup Flow of the Multiple CPU System	2- 1

3. COMMUNICATION BETWEEN THE PLC CPU AND THE MOTION CPU IN	0 41 000
THE MULTIPLE CPU SYSTEM	3- 1 to 3-26
3.1 Automatic Refresh Function of The Shared CPU Memory	2 1
3.2 Control Instruction from the PLC CPU to The Motion CPU (Motion dedicated instructions)	
3.3 Reading/Writing Device Data	
3.4 Shared CPU Memory	
3.4 Shared GFO Memory	3-22
4. STRUCTURE OF THE MOTION CPU PROGRAM	4- 1 to 4- 4
4.1 Motion Control in SV13/SV22 Real Mode	4- 2
4.2 Motion Control in SV22 Virtual Mode	
5. MOTION DEDICATED PLC INSTRUCTION	5- 1 to 5-48
5.1 Motion Dedicated PLC Instruction	5- 1
5.1.1 Restriction item of the Motion dedicated PLC instruction	
5.2 Motion SFC Start Request from The PLC CPU to The Motion CPU:	
S(P).SFCS (PLC instruction: S(P).SFCS)	5- 9
5.3 Servo Program Start Request from The PLC CPU to The Motion CPU:	
S(P).SVST (PLC instruction: S(P).SVST)	5-12
5.4 Current Value Change Instruction from The PLC CPU to The Motion CPU:	
S(P).CHGA (PLC instruction: S(P).CHGA)	5-17
5.5 Speed Change Instruction from The PLC CPU to The Motion CPU:	
S(P).CHGV (PLC instruction: S(P).CHGV)	5-30
5.6 Torque Limit Value Change Request Instruction from The PLC CPU to The Motion CPU:	
S(P).CHGT (PLC instruction: S(P).CHGT)	5-34
5.7 Write from The PLC CPU to The Motion CPU: S(P).DDWR (PLC instruction: S(P).DDWR)	5-38
5.8 Read from The Devices of The Motion CPU: S(P).DDRD (PLC instruction: S(P).DDRD)	5-42
5.9 Interrupt Instruction to The Other CPU: S(P).GINT (PLC instruction: S(P).GINT)	5-46
6. MOTION SFC PROGRAMS	6- 1 to 6-28
C.4 Mation CEC Descree Configuration	6 1
6.1 Motion SFC Program Configuration	
6.2 Motion SFC Chart Symbol List	
6.3 Branch and Coupling Chart List	
6.4 Motion SFC Program Name	
6.5 Steps	
·	
6.5.2 Operation control step	
6.5.3 Subroutine call/start step	
6.5.4 Clear step	
6.7 Jump, Pointer	
6.9 Branches, Couplings	
0.8 Dianones, Coupings	0-10

6.9.2 Selective branch, selective coupling	6-19
6.9.3 Parallel branch, parallel coupling	
6.10 Y/N Transitions	
6.11 Motion SFC Comments	6-26
7. OPERATION CONTROL PROGRAMS	7- 1 to 7-96
7.1 Operation Control Programs	7- 1
7.2 Device Descriptions	7- 7
7.3 Constant Descriptions	7- 9
7.4 Binary Operations	7-10
7.4.1 Substitution : =	7-10
7.4.2 Addition : +	7-12
7.4.3 Subtraction :	7-13
7.4.4 Multiplication : *	7-15
7.4.5 Division : /	7-16
7.4.6 Remainder : %	7-17
7.5 Bit Operations	7-18
7.5.1 Bit inversion(Complement): ~	7-18
7.5.2 Bit logical AND : &	7-19
7.5.3 Bit logical OR :	7-20
7.5.4 Bit exclusive logical OR : ^	7-21
7.5.5 Bit right shift : >>	7-22
7.5.6 Bit left shift : <<	7-23
7.5.7 Sign inversion(Complement of 2):	7-24
7.6 Standard Functions	7-25
7.6.1 Sine : SIN	7-25
7.6.2 Cosine : COS	7-26
7.6.3 Tangent : TAN	7-27
7.6.4 Arcsine : ASIN	7-28
7.6.5 Arccosine : ACOS	7-29
7.6.6 Arctangent : ATAN	7-30
7.6.7 Square root : SQRT	7-31
7.6.8 Natural logarithm : LN	
7.6.9 Exponential operation : EXP	
7.6.10 Absolute value : ABS	
7.6.11 Round-off : RND	
7.6.12 Round-down : FIX	
7.6.13 Round-up : FUP	
7.6.14 BCD → BIN conversion : BIN	
7.6.15 BIN → BCD conversion : BCD	
7.7 Type Conversions	
7.7.1 Signed 16-bit integer value conversion : SHORT	
7.7.2 Unsigned 16-bit integer value conversion: USHORT	
7.7.3 Signed 32-bit integer value conversion : LONG	
7.7.4 Unsigned 32-bit integer value conversion : ULONG	
7.7.5 Signed 64-bit floating-point value conversion : FLOAT	
7.7.6 Unsigned 64-bit floating-point value conversion : UFLOAT	
- U	

7.8 Bit Device Statuses	7-46
7.8.1 ON (Normally open contact): (None)	7-46
7.8.2 OFF (Normally closed contact) : !	7-47
7.9 Bit Device Controls	7-48
7.9.1 Device set : SET	7-48
7.9.2 Device reset: RST	7-50
7.9.3 Device output: DOUT	7-52
7.9.4 Device input: DIN	7-53
7.9.5 Bit device output : OUT	7-54
7.10 Logical Operations	7-56
7.10.1 Logical acknowledgement : (None)	7-56
7.10.2 Logical negation : !	7-57
7.10.3 Logical AND: *	7-58
7.10.4 Logical OR: +	7-59
7.11 Comparison Operations	7-60
7.11.1 Equal to : ==	7-60
7.11.2 Not equal to : !=	7-61
7.11.3 Less than : <	7-62
7.11.4 Less than or equal to : <=	7-63
7.11.5 More than : >	7-64
7.11.6 More than or equal to : >=	7-65
7.12 Motion-Dedicated Functions(CHGV, CHGT)	7-66
7.12.1 Speed change request : CHGV	7-66
7.12.2 Torque limit value change request : CHGT	7-72
7.13 Other Instructions	7-74
7.13.1 Event task enable : El	7-74
7.13.2 Event task disable : DI	7-75
7.13.3 No operation : NOP	7-76
7.13.4 Block transfer : BMOV	7-77
7.13.5 Same data block transfer : FMOV	7-80
7.13.6 Write device data to shared CPU memory of the self CPU: MULTW	7-82
7.13.7 Read device data from shared CPU memory of the other CPU: MULTR	7-85
7.13.8 Write device data to intelligent function module/special function module : TO	7-88
7.13.9 Read device data from intelligent function module/special function module : FROM .	7-91
7.13.10 Time to wait : TIME	7-94
7.14 Comment Statement : //	7-96
8. TRANSITION PROGRAMS	8- 1 to 8- 2
8.1 Transition Programs	8- 1
9. MOTION CONTROL PROGRAMS	9- 1 to 9-22
9.1 Servo Instruction List	9- 1
9.2 Servomotor/Virtual Servomotor Shaft Current Value Change	9-14
9.3 Synchronous Encoder Shaft Current Value Change Control (SV22 Only)	
9.4 Cam Shaft Within One Pevalution Current Value Change Control (SV22 Only)	0.20

9.5 Programming Instructions	9-22
9.5.1 Cancel • start	9-22
9.5.2 Indirect designation using motion devices	9-22
10. MOTION DEVICES	10- 1 to 10- 6
10.1 Motion Registers (#0 to #8191)	10- 1
10.2 Coasting Timer (FT)	10- 6
11. MOTION SFC PARAMETER	11- 1 to 11-20
11.1 Task Definitions	11- 1
11.2 Number of Consecutive Transitions and Task Operation	11- 2
11.2.1 Number of consecutive transitions	11- 2
11.2.2 Task operation	11- 3
11.3 Execution Status of The Multiple Task	
11.4 Task Parameters	
11.5 Program Parameters	
11.6 How to Start The Motion SFC Program	11-16
11.6.1 Automatic start	
11.6.2 Start from the Motion SFC program	11-16
11.6.3 Start from PLC (PLC instruction S(P).SFCS)	11-16
11.7 How to End The Motion SFC Program	11-17
11.8 How to Change from One Motion SFC Program to Another	
11.9 How to Manage The Executing Program	
11.10 Operation Performed at CPU Power-Off or Reset	
11.11 Operation Performed when CPU is Switched from RUN/STOP	
11.12 Operation Performed when PLC Ready flag (M2000) Turns OFF/ON	
11.13 Operation at The Error Occurrence	
12. USER FILES	12- 1 to 12- 8
12.1 Projects	10 1
12.2 User File List	
12.3 Online Change in The Motion SFC Program	
12.3.1 Operating method for The Online Change	
12.3.2 Transfer of program	
13. LIMIT SWITCH OUTPUT FUNCTION	13- 1 to 13- 8
13.1 Operations	13- 1
13.2 Limit Output Setting Data	13- 4
14. ROM OPERATION FUNCTION	14- 1 to 14-12
14.1 About the ROM Operation Function	14- 1
14.2 Specifications of LED • Switch	
14.3 ROM Operation Function Details	
14.4 Operating Procedure of "ROM writing"	

15. SECURITY FUNCTION	15- 1 to 15- 6
15.1 Password Registration/change	15- 1
15.2 Password Clearance	
15.3 Password Check	
15.4 Password Save	
15.5 Clear All	15- 6
16. COMMUNICATIONS VIA NETWORK	16- 1 to 16-10
16.1 Specifications of The Communications via Network	16- 2
16.2 Access Range of The Communications via Network	
16.2.1 Network configuration via the MELSECNET/10(H) or the Ethernet	
16.2.2 Network configuration via the CC-Link	
16.2.3 Network configuration via the RS422/485	
16.2.4 Network configuration which MELSECNET/10 (H), Ethernet, CC-Link, RS4.	
17. MONITOR FUNCTION OF THE MAIN CYCLE	17- 1 to 17- 2
18. SERVO PARAMETER READING FUNCTION	18- 1 to 18- 2
18.1 About The Servo Parameter Read Request Devices	18- 1
18.2 Operating Procedure of The Servo Parameter Reading Function	
19. ERROR CODE LISTS	19- 1 to 19-18
19.1 Reading Procedure for Error Codes	19- 1
19.2 Motion SFC Error Code List	
19.3 Motion SFC Parameter Errors	19-11
19.4 Multiple CPU Error Codes	19-13
19.4.1 Self-diagnosis error code	19-13
19.4.2 Release of self-diagnosis error	19-18
APPENDICES	APP- 1 to APP-32
APPENDIX 1 Processing Times	ADD 1
APPENDIX 1.1 Processing time of operation control/Transition instruction	
APPENDIX 2 Sample Program	
APPENDIX 2.1 Program example to execute the Multiple CPU dedicated instruct	
APPENDIX 2.1 Trogram example to execute the Multiple OF 0 dedicated instruction by APPENDIX 2.2 The program example to execute plural Multiple CPU instruction by	•
one time	•
APPENDIX 2.3 Motion control example by Motion SFC program	
APPENDIX 2.4 Continuation execution example at the subroutine re-start by the N	Notion SFC program
APPENDIX 2.5 Continuation execution example after the stop by the Motion SFC	programAPP-28

About Manuals

The following manuals are related to this product.

Referring to this list, please request the necessary manuals.

Related Manuals

(1) Motion controller

Manual Name	Manual Number (Model Code)
Q173CPU(N)/Q172CPU(N) Motion controller User's Manual This manual explains specifications of the Motion CPU modules, Q172LX Servo external signal interface module, Q172EX Serial absolute synchronous encoder interface module, Q173PX Manual pulse generator interface module, Teaching units, Power supply modules, Servo amplifiers, SSCNET cables, synchronous encoder cables and others. (Optional)	IB-0300040 (1XB780)
Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE) This manual explains the servo parameters, positioning instructions, device list, error list and others. (Optional)	IB-0300043 (1XB782)
Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE) This manual describes the dedicated instructions use to the synchronous control by virtual main shaft, mechanical system program create mechanical module. This manual explains the servo parameters, positioning instructions, device list, error list and others. (Optional)	IB-0300044 (1XB783)
Q173CPU(N)/Q172CPU(N) Motion controller (SV43) Programming Manual This manual describes the dedicated instructions to execute the positioning control by Motion program of EIA language (G-code). This manual explains the Multiple CPU system configuration, performance specifications, functions, programming, debugging, servo parameters, positioning instructions, device list error list and others. (Optional)	IB-0300070 (1CT784)

(2) PLC

Manual Name	Manual Number (Model Code)
QCPU User's Manual (Hardware Design, Maintenance and Inspection) This manual explains the specifications of the QCPU modules, power supply modules, base units, extension cables, memory card battery, and the maintenance/inspection for the system, trouble shooting, error codes and others. (Optional)	SH-080483ENG (13JR73)
Qn(H)/QnPH/QnPRHCPUCPU User's Manual (Function Explanation, Program Fundamentals) This manual explains the functions, programming methods and devices and others to create programs with the QCPU. (Optional)	SH-080808ENG (13JZ28)
QCPU User's Manual (Multiple CPU System) This manual explains Multiple CPU system overview, system configuration, I/O modules, communication between CPU modules and communication with the I/O modules or intelligent function modules. (Optional)	SH-080485ENG (13JR75)
QCPU Programming Manual (Common Instructions) This manual explains how to use the sequence instructions, basic instructions, application instructions and micro computer program. (Optional)	SH-080809ENG (13JW10)
QCPU (Q Mode)/QnACPU Programming Manual (PID Control Instructions) This manual explains the dedicated instructions used to exercise PID control. (Optional)	SH-080040 (13JF59)
QCPU (Q Mode)/QnACPU Programming Manual (SFC) This manual explains the system configuration, performance specifications, functions, programming, debugging, error codes and others of MELSAP3. (Optional)	SH-080041 (13JF60)
I/O Module Type Building Block User's Manual This manual explains the specifications of the I/O modules, connector, connector/terminal block conversion modules and others. (Optional)	SH-080042 (13JL99)

MEMO			

1. OVERVIEW

1.1 Overview

This programming manual describes the Motion SFC program and Multiple CPU system of the operating system software packages "SW6RN-SV13Q\(\subseteq\)", "SW6RN-SV22Q\(\subseteq\)" for Motion CPU module(Q173CPU(N)/Q172CPU(N)). In this manual, the following abbreviations are used.

Generic term/Abbreviation	Description
Q173CPU(N)/Q172CPU(N) or Motion CPU (module)	Q173CPUN/Q172CPUN/Q173CPUN-T/Q172CPUN-T/Q173CPU/Q172CPU Motion CPU module
Q172LX/Q172EX/Q173PX or Motion module	Q172LX Servo external signals interface module/ Q172EX(-S1/-S2/-S3) Serial absolute synchronous encoder interface module (Note-1)/ Q173PX(-S1) Manual pulse generator interface module
MR-H-BN	Servo amplifier model MR-H□BN
MR-J2□-B	Servo amplifier model MR-J2S-□B/MR-J2M-B/MR-J2-□B/MR-J2-03B5
AMP or Servo amplifier	General name for "Servo amplifier model MR-H□BN/MR-J2S-□B/MR-J2M-B/MR-J2-□B/MR-J2-03B5, Vector inverter FREQROL-V500 series"
QCPU, PLC CPU or PLC CPU module	Qn(H)CPU
Multiple CPU system or Motion system	Abbreviation for "Multiple PLC system of the Q series"
CPUn	Abbreviation for "CPU No.n (n= 1 to 4) of the CPU module for the Multiple CPU system"
Programming software package	General name for "MT Developer" and "GX Developer"
Operating system software	General name for "SW□RN-SV□Q□"
SV13	Operating system software for conveyor assembly use (Motion SFC) : SW6RN-SV13Q□
SV22	Operating system software for automatic machinery use (Motion SFC) : SW6RN-SV22Q□
MT Developer	Abbreviation for Integrated start-up support software package "MT Developer"
GX Developer	Abbreviation for MELSEC PLC programming software package "GX Developer (Version 6 or later)"
Manual pulse generator or MR-HDP01	Abbreviation for "Manual pulse generator (MR-HDP01)"
Serial absolute synchronous encoder or MR-HENC/Q170ENC	Abbreviation for "Serial absolute synchronous encoder (MR-HENC/Q170ENC)"
SSCNET (Note-2)	High speed serial communication between Motion controller and servo amplifier
Absolute position system	General name for "System using the servomotor and servo amplifier for absolute position"
Cooling fan unit	Cooling fan unit (Q170FAN)
Dividing unit	Dividing unit (Q173DV)
3	

Generic term/Abbreviation	Description					
A□0BD-PCF	A10BD-PCF/A30BD-PCF SSC I/F board					
SSC I/F communication cable	Abbreviation for "Cable for SSC I/F board/card"					
Teaching Unit or A31TU-D3□/A31TU-DN□	A31TU-D3□/A31TU-DN□ Teaching unit ^(Note-3)					
Intelligent function module	Abbreviation for "MELSECNET/H module/Ethernet module/CC-Link module/ Serial communication module"					
Vector inverter (FR-V500)	Vector inverter FREQROL-V500 series					

(Note-1): Q172EX can be used in SV22.

(Note-2) : SSCNET: \underline{S} ervo \underline{S} ystem \underline{C} ontroller \underline{NET} work

(Note-3): Teaching unit can be used in SV13.

REMARK

For information about the each module, design method for program and parameter, refer to the following manuals relevant to each module.

	Item	Reference Manual				
Motion CPU mo	odule/Motion unit	Q173CPU(N)/Q172CPU(N) User's Manual				
	oheral devices for PLC program design, I/O telligent function module	Manual relevant to each module				
Operation meth	od for MT Developer	Help of each software				
SV13/SV22	 Design method for positioning control program in the real mode Design method for positioning control parameter 	Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE)				
SV22 (Virtual mode)	Design method for mechanical system program	Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)				

1.2 Features

The Motion CPU and Multiple CPU system have the following features.

1.2.1 Features of Motion CPU

(1) Q series PLC Multiple CPU system

- (a) The load of control processing for each CPU can be distributed by controlling the complicated servo control with the Motion CPU, and the machine control or information control with the PLC CPU, and flexible system configuration can be realized.
- (b) The Motion CPU and PLC CPU are selected flexibly, and the Multiple CPU system up to 4 CPU modules can be realized.

The Motion CPU module for the number of axis to be used can be selected.

Q173CPU(N) : Up to 32 axes Q172CPU(N) : Up to 8 axes

The PLC CPU module for the program capacity to be used can be selected. (One or more PLC CPU is necessary with the Multiple CPU system.)

 Q00CPU
 : 8k steps

 Q01CPU
 : 14k steps

 Q02CPU, Q02HCPU
 : 28k steps

 Q06HCPU
 : 60k steps

 Q12HCPU
 : 124k steps

 Q25HCPU
 : 252k steps

- (c) The device data of other CPU can be used as the device data of self CPU because the Multiple CPU automatic refresh may do automatically data giving and receiving between each CPU of the Multiple CPU system.
- (d) The device data access of the Motion CPU and the Motion SFC program start can be executed from PLC CPU by the Motion dedicated PLC instruction.

(2) Programming in the Motion SFC programs

- (a) Since a program intelligible for anyone can be created in flow chart form by macking a sequence of machine operation correspond to each operation step, maintenance nature improves.
- (b) Since transition conditions are judged with Motion CPU side and positioning starts, there is not dispersion in the response time influenced by PLC scan time.

- (c) High speed and high response processing is realizable with the step processing method (only active steps) of Motion SFC.
- (d) Not only positioning control but also numerical operations, device SET/RST, etc. can be processed with Motion CPU side, making via PLC CPU is unnecessary and a tact time can be shortened.
- (e) By transition condition description peculiar to Motion SFC, the instructions to servo amplifier is possible at completion of starting condition.
- (f) By transition condition description peculiar to Motion SFC, after starting, transition to next step is possible without waiting for positioning completion.
- (g) Motion SFC program that responds and executes it at high speed for interrupt input from external source can be set.
- (h) Motion SFC program executed in the fixed cycle (0.88ms, 1.77ms, 3.55ms, 7.11ms, 14.2ms) by synchronizing to the Motion operation cycle can be set.

(3) High speed operation processing

- (a) The minimum operation cycle of the Motion CPU is made 0.88[ms] (so far, the ratio of 4 times), and it correspond with high frequency operation.
- (b) High speed PLC control is possible by the Q series PLC CPU. (For LD instruction)

Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU $: 0.034[\mu s]$ Q02CPU $: 0.079[\mu s]$ Q00CPU $: 0.16[\mu s]$ Q01CPU $: 0.10[\mu s]$

(4) Connection between the Motion controller and servo amplifier with high speed serial communication by SSCNET

High speed serial communication by SSCNET connect between the Motion controller and servo amplifier, and batch control the charge of servo parameter, servo monitor and test operation, etc.

It is also realised reduce the number of wires.

(5) The operating system software package for your application needs By installing the operating system software for applications in the internal flash memory of the Motion CPU, the Motion controller suitable for the machine can be realized.

And, it also can correspond with the function improvement of the software package.

(a) Conveyor assembly use (SV13) Offer liner interpolation, circular interpolation, helical interpolation, constantspeed control, speed control, fixed-pitch feed and etc. by the dedicated servo instruction. Ideal for use in conveyors and assembly machines.

- (b) Automatic machinery use (SV22)
 Provides synchronous control and offers electronic cam control by mechanical support language. Ideal for use in automatic machinery.
- (c) Machine tool peripheral use (SV43) Offer liner interpolation, circular interpolation, helical interpolation, constantspeed positioning and etc. by the EIA language (G-code). Ideal for use in machine tool peripheral.

1.2.2 Basic specifications of Q173CPU(N)/Q172CPU(N)

(1) Module specifications

Item	Q173CPUN	Q173CPUN-T	Q173CPU	Q172CPUN	Q172CPUN-T	Q172CPU
Teaching unit		Usable			Usable	
Internal current consumption(5VDC) [A]	1.25	1.56 ^(Note)	1.75	1.14	1.45 ^(Note)	1.62
Mass [kg]	0.23 0.24		0.22	0.22	0.23	0.21
Exterior dimensions [mm(inch)]	98(3.86)(H) × 27.4(1.08)(W) × 114.3(4.50)(D)		118(4.65)(H) × 27.4(1.08)(W) × 89.3(3.52)(D)		< 27.4(1.08)(W) 3(4.50)(D)	118(4.65)(H) × 27.4(1.08)(W) × 89.3(3.52)(D)

(Note): Current consumption 0.26[A] of the teaching unit is included.

(2) SV13/SV22 Motion control specifications/performance specifications

(a) Motion control specifications

Item		Q173CPUN(-T)	Q173CPU	Q172CPUN(-T)	Q172CPU			
Number of contro	l axes	Up to 3	32 axes	Up to 8	axes			
	SV13		to 8 axes to 16 axes	0.88ms/1 to 8 axes				
Operation cycle		3.55ms/17	to 32 axes					
(default)		0.88ms/ 1	to 4 axes					
(40.44.)	SV22	1.77ms/ 5	to 12 axes	0.88ms/1 t				
	0122	3.55ms/13	to 24 axes	1.77ms/5 t	o 8 axes			
		7.11ms/25	to 32 axes					
Interpolation func	tions	Linear in	terpolation (Up to 4 axes	s), Circular interpolation (2 axes),			
interpolation fanc			Helical interpo	lation (3 axes)				
		PTP(Point to Poir	nt) control, Speed contro	I, Speed-position control,	Fixed-pitch feed,			
Control modes		Constant speed control, Position follow-up control, Speed switching control,						
		High-speed oscillation control, Synchronous control (SV22)						
Acceleration/		Automatic trapezoidal acceleration/deceleration,						
deceleration conti	rol	S-curve acceleration/deceleration						
Compensation		Backlash compensation, Electronic gear						
Programming lang	guage	Motion SFC, Dedicated instruction, Mechanical support language (SV22)						
Servo program ca	apacity	14k steps						
Number of position	ning	3200 points						
points			(Positioning data can b	e designated indirectly)				
Programming too	I		IBM I	PC/AT				
Peripheral I/F			USB/RS-23	32/SSCNET				
Teaching operation	on	F	Provided (Q173CPUN-T/	Q172CPUN-T, SV13 use)			
Home position ret	turn	Proximity dog type (2 types), Count type (3 types), Data set type (2 types), Dog cradle Stopper type (2 types), Limit switch combined type (Home position return re-try function provided, home position shift function provided						
JOG operation fur	nction			vided	, ,			
1		1						

Motion control specifications (continued)

Item	Q173CPUN(-T)	Q173CPU	Q172CPUN(-T)	Q172CPU						
Manual pulse generator operation function		Possible to con	nect 3 modules							
Synchronous encoder operation function	Possible to connect 12 modules Possible to connect 8 modul									
M-code function		M-code output function provided M-code completion wait function provided								
Limit switch output		Number of outpu	t points 32 points							
function		Watch data: Motion co	ntrol data/Word device							
Absolute position system	(Possible to sele (Note) : W	ect the absolute data me	g battery to servo amplific thod or incremental meth s used, only the increme	nod for each axis)						
Number of SSCNET I/F	5CH	(Note-1)	2C	Н						
Motion related interface module	Q172LX : 4 mo Q172EX : 6 mo Q173PX : 4 mo	odules usable	Q172LX : 1 module usable Q172EX : 4 modules usable Q173PX : 3 modules usable							

(Note-1) : Use the Dividing unit(Q173DV) or dividing cable(Q173J2B \triangle CBL \square M/Q173HB \triangle CBL \square M).

(Note-2): When using the incremental synchronous encoder (SV22 use), you can use avobe number of modules. When connecting the manual pulse generator, you can use only 1 module.

(b) Motion SFC Performance Specifications

	Item			Q173CPU(N)/Q172CPU(N)			
Motion SFC program capacity	Code total (Motion SI + Transition	FC chart+ O _l	peration control	287k bytes			
	Text total (Operation	n control + Tı	ransition)	224k bytes			
	· ·	f Motion SFC	,	256 (No.0 to 255)			
	Motion SF	C chart size	/program	Up to 64k bytes (Included Motion SFC chart comments)			
Mation CEC magnets	Number o	f Motion SF	C steps/program	Up to 4094 steps			
Motion SFC program	Number o	f selective br	ranches/branch	255			
	Number o	f parallel bra	nches/branch	255			
	Parallel br	anch nesting)	Up to 4 levels			
	Number o	f operation c	ontrol programs	4096 with F(Once execution type) and FS(Scan execution type) combined. (F/FS0 to F/FS4095)			
	Number o	f transition p	rograms	4096(G0 to G4095)			
Operation control program	Code size	/program		Up to approx. 64k bytes (32766 steps)			
(F/FS)	Number of	f blocks(line)	/program	Up to 8192 blocks (in the case of 4 steps(min)/blocks)			
1	Number of	f characters/	block (line)	Up to 128 (comment included)			
Transition program	Number of	f operand/blo	ock	Up to 64 (operand: constants, word device, bit devices)			
(G)	() nesting	/block		Up to 32 levels			
	Descriptiv	Operation control program		Calculation expression/bit conditional expression			
	expression		program	Calculation expression/bit conditional expression/			
				comparison conditional expression			
			ited programs	Up to 256			
	Number of	f multi active steps		Up to 256 steps/all programs			
		Normal task	(T	Executed in motion main cycle			
		Event task	Fixed cycle	Executed in fixed cycle			
Execute specification	Executed	(Execution	Cytornal	(0.88ms, 1.77ms, 3.55ms, 7.11ms, 14.2ms)			
	task	can be	External interrupt	Executed when input ON is set among interrupt module QI60 (16 points).			
	taok	masked.)	PLC interrupt	Executed with interrupt instruction (S(P).GINT) from PLC CPU.			
			r LO interrupt	Executed when input ON is set among interrupt module QI60			
		NMI task		(16 points).			
Number of I/O points (X/Y)	1	l .		8192 points			
Number of real I/O points (PX/I	PY)			256 points			
. ,	Internal re	lays (M)					
	Latch rela			Total (M + L) : 8192 points			
	Link relays	s (B)		8192 points			
Number of devices	Annunciat	ors (F)		2048 points			
(Device In the Motion CPU only)	Special re	lays (M)		256 points			
(Included the positioning	Data regis	ters (D)		8192 points			
dedicated device)	Link regist	ers (W)		8192 points			
201.00	Special re	gisters (D)		256 points			
	Motion reg	gisters (#)		8192 points			
	Coasting t	imers (FT)		1 point (888µs)			

1.2.3 Operation control/transition control specifications

(1) Table of the operation control/transition control specifications

ltem			Remark							
	Calculation	expression	Expres		eric resu r calcula ces.	D100+1,SIN(D100), etc.				
Expression	Conditiona	Conditional expression Comparison conditional expression			or false r judging (M0, !M0, M1*M0, (M1+M2)*(!M3+M4), etc.			
						ring indirect tants and w			d calculation	D100==100 D10 <d102+d10, etc.<="" td=""></d102+d10,>
				Acces	ssibility	L	sable task	s	Description	The input X/output Y are written with the actual input
		Device	Symbol	Read	Write	Normal	Event	NMI	example	PX/actual output PY.
	Input	Input module non-loaded range	х	0	0				X100	It does the layput of the I/O numbers of PX, PY by a set up of as system.
		Input module loaded range	PX	0	×			0	PX180	(In the operation control program/transition program,
	Output	Output module non-loaded range	Y	0	0	0	0		Y100	automatically represented as PX/PY according to the system setting information.)
		Output module loaded range	PY	0	0				PY1E0	
	Internal	relay	М	0	0				M20	
	Latch re	lay	L	0	0				L1000	
	Link rela	у	В	0	0				B3FF	
	Annunci		F	0	0				F0	
Bit devices	Special	relay	М	0	0				M9000	
	CAUTION <restrictions bit="" devices="" on="" write-enabled=""> 1) Write to device X is allowed only within the input module non-installed range.</restrictions>									
	, ,	ial relay has predet				•				
		ot perform write to o SET/RST is disable			_					
			tu iii tile io	Rema		nges.				
		RST disable range o M2032	Stor	t accept		1				
	1012001 (O IVIZUOZ	Glai	t accept	GEVICE	_				
	(Note):	DOUT output disab	led in the f	following	device r	anges.				
		output disable rang	Э	Rema	rk	4				
		tion including o M2127	De	dicated	device					
	M9000 t	o M9255	5	Special relay						

Table of the operation control/transition control specification(continued)

Item				Specifi	cations					Remark
				Acces	sibility	y Usable tasks		'S	Description	
		Devices	Symbol	Read	Write	Normal	Event	NMI	example	
	Data reg	ister	D	0	0				DOL	
	Link regis	ster	W	0	0				W1F:F	
	Special r	egister	D	0	0	0	0	0	D9000	
Word devices	Motion re	egister	#	0	0	<u> </u>			#0F	
vvora devices	Coasting	timer	FT	0	×				FT	
	CAUTIC	N							usable unusable	
	<restrict 1) Speci Do n</restrict 									
	(None)	16-bit integer ty 16-bit integer ty					-32768 0 to	K10, D100, etc.		
Data type	L	32-bit integer ty			-21	147483648	2000000000, W100L, etc.			
		32-bit integer ty 64-bit floating-p					U to 42	9496729	0	
	F		on real number ty	ne)			IEEE	format		1.23, #10F, etc.
Occasions	К	Decimal constant	The above data	a type s		ol 'L' or '. (decimal point)' provided at the end				K-100, H0FFL, etc.
Constant	Н	Hexadecimal constant	as the applicat				inout the t	ата туре	is regarded	'K' may be omitted.
	Binary oper	ation	6							
	Bit operatio	n	6							
	Sign		1							
	Standard fu		15							
Number of	Type conve		6				00			
instructions	Bit device s		2				63	in total		
	Bit device o		5 4							
	Logical ope Comparisor		6							
		cated function	2							
	Others	CALCA TATIONOTI	10							
Read/write response	Input respon	10	Direct read control at instruction execution.							
of input PX, output PY	Output resp					ntrol at ins				1

(2) Table of the operation control/transition instruction

					Usabl	e step	V/N	
Classification	Symbol	Function	Format	Basic steps	F/FS	G	Y/N transition's conditional expression	Section of reference
	=	Substitution	(D)=(S)	4	0	0	_	7.4.1
	+	Addition	(S1)+(S2)	4	0	0	_	7.4.2
S	-	Subtraction	(S1)-(S2)	4	0	0	_	7.4.3
Binary operation	*	Multiplication	(S1)*(S2)	4	0	0	_	7.4.4
	1	Division	(S1)/(S2)	4	0	0	_	7.4.5
	%	Remainder	(S1)%(S2)	4	0	0	_	7.4.6
	~	Bit inversion (complement)	~(S)	2	0	0	_	7.5.1
	&	Bit logical AND	(S1)&(S2)	4	0	0	_	7.5.2
	I	Bit logical OR	(S1) (S2)	4	0	0	_	7.5.3
Bit operation	^	Bit exclusive OR	(S1) ⁴ (S2)	4	0	0	_	7.5.4
	>>	Bit right shift	(S1)>>(S2)	4	0	0	_	7.5.5
	<<	Bit left shift	(S1)<<(S2)	4	0	0	_	7.5.6
Sign	-	Sign inversion (complement of 2)	-(S)	2	0	0	_	7.5.7
g	SIN	Sine	SIN(S)	2	0	0	_	7.6.1
	COS	Cosine	COS(S)	2	0	0	_	7.6.2
	TAN	Tangent	TAN(S)	2	0	0	_	7.6.3
	ASIN	Arcsine	ASIN(S)	2	0	0	_	7.6.4
	ACOS	Arccosine	ACOS(S)	2	0	0	_	7.6.5
	ATAN	Arctangent	ATAN(S)	2	0	0	_	7.6.6
	SQRT	Square root	SQRT(S)	2	0	0	_	7.6.7
Standard function	LN	Natural logarithm	LN(S)	2	0	0	_	7.6.8
Ctaridara farioticii	EXP	Exponential operation	EXP(S)	2	0	0	_	7.6.9
	ABS	Absolute value	ABS(S)	2	0	0	_	7.6.10
	RND	Round-off	RND(S)	2	0	0	_	7.6.11
	FIX	Round-down	FIX(S)	2	0	0	_	7.6.12
	FUP	Round-up	FUP(S)	2	0	0	_	7.6.13
	BIN	BCD → BIN conversion	BIN(S)	2	0	0	_	7.6.14
	BCD	BIN → BCD conversion	BCD(S)	2	0	0		7.6.15
	SHORT	Convert into 16-bit integer type (signed)	SHORT(S)	2	0	0	_	7.7.1
	USHORT	Convert into 16-bit integer type (signed) Convert into 16-bit integer type (unsigned)	USHORT(S)	2	0	0		7.7.2
	LONG	Convert into 10-bit integer type (drisigned)	LONG(S)	2	0	0		7.7.3
	ULONG	Convert into 32-bit integer type (signed) Convert into 32-bit integer type (unsigned)	ULONG(S)	2	0	0		7.7.4
Type conversion	FLOAT	Regard as signed data and convert into 64- bit floating point type	FLOAT(S)	2	0	0	_	7.7.5
	UFLOAT	Regard as unsigned data and convert into 64-bit floating point type	UFLOAT(S)	2	0	0	_	7.7.6
	(None)	ON (normally open contact)	(S)	2	0	0	0	7.8.1
Bit device status	!	OFF (normally closed contact)	!(S)	2	0	0	0	7.8.2
			SET(D)	3	0	0	_	
	SET	Device set	SET(D)= (conditional expression)	4	0	0	_	7.9.1
			RST(D)	3	0	0	_	
Bit device control	RST	Device reset	RST(D)=(conditional expression)	4	0	0	_	7.9.2
	DOUT	Device output	DOUT(D),(S)	4	0	0	_	7.9.3
	DIN	Device input	DIN(D),(S)	4	0	0	_	7.9.4
	OUT	Bit device output	OUT(D)=(conditional	4	0	0	_	7.9.5
	001	Επι σενίσε σαιμαί	expression)	4			_	າ .ອ.ວ

Table of the operation control/transition instruction (continued)

					Usabl	e step	Y/N	
Classification	Symbol	Function	Format	Basic steps	F/FS	G	transition's conditional expression	Section of reference
	(None)	Logical acknowledgment	(Conditional expression)	0	0	0	0	7.10.1
	!	Logical negation	!(Conditional expression)	2	0	0	0	7.10.2
Logical operation	*	Logical AND	(Conditional expression) * (conditional expression)	4	0	0	0	7.10.3
	+	Logical OR	(Conditional expression) + (conditional expression)	4	0	0	0	7.10.4
	==	Equal to	(Conditional expression) == (conditional expression)	4	0	0	0	7.11.1
	!=	Not equal to	(Conditional expression) != (conditional expression)	4	0	0	0	7.11.2
Comparison	<	Less than	(Conditional expression) < (conditional expression)	4	0	0	0	7.11.3
operation	<=	Less than or equal to	(Conditional expression) <= (conditional expression)	4	0	0	0	7.11.4
	>	More than	(Conditional expression) > (conditional expression)	4	0	0	0	7.11.5
	>=	More than or equal to	(Conditional expression) >= (conditional expression)	4	0	0	0	7.11.6
Motion dedicated	CHGV	Speed change request	CHGV((S1),(S2))	4	0	0	_	7.12.1
function	CHGT	Torque limit value change request	CHGT((S1),(S2))	4	0	0	_	7.12.2
	EI	Event task enable	El	1	0	0	_	7.13.1
	DI	Event task disable	DI	1	0	0	_	7.13.2
	NOP	No operation	NOP	1	0	0	_	7.13.3
	BMOV	Block transfer	BMOV(D),(S),(n)	6	0	0	_	7.13.4
	FMOV	Same data block transfer	FMOV(D),(S),(n)	6	0	0	_	7.13.5
Others	MULTW	Write device data to shared CPU memory of the self CPU	MULTW(D),(S),(n),(D1)	8	0	0	_	7.13.6
	MULTR	Read device data from shared CPU memory of the other CPU	MULTR(D),(S1),(S2),(n)	7	0	0	_	7.13.7
	то	Write device data to intelligent function module/special function module.	TO(D1),(D2),(S),(n)	7	0	0	_	7.13.8
	FROM	Read device data from intelligent function module/special function module.	FROM(D),(S1),(S2),(n)	7	0	0	_	7.13.9
	TIME	Time to wait	TIME(S)	7		0		7.13.10

○: Usable —: Unusable

(3) Rough calculation expression of singleprogram for operation control/transition program

- 2 + (1 + Total number of basic steps in 1 block
- + Number of 32-bit constants/1 block imes 1
- + Number of 64-bit constants/1 block \times 3) \times Number of blocks (steps) (1 step = 2 bytes)

1.2.4 Differences between Q173CPU(N)/Q172CPU(N) and A173UHCPU/A172SHCPUN

(1) Differences between Q173CPU(N)/Q172CPU(N) and A173UHCPU/A172SHCPUN

			Item		Q173CPU(N)	Q172CPU(N)	A173UHCPU	A172SHCPUN	
	Nur	mber of co	ontrol axes		Up to 32 axes	Up to 8 axes	Up to 32 axes	Up to 8 axes	
			SV13		0.88ms/1 to 8 axes 1.77ms/9 to 16 axes 3.55ms/17 to 32 axes (Default) (It can be set up by the parameters.)	0.88ms/1 to 8 axes (Default) (It can be set up by the parameters.)	3.55ms/1 to 20 axes 7.11ms/21 to 32 axes	3.55ms/1 to 8 axes	
	Оре	eration cyd	SV22		0.88ms/1 to 4 axes 1.77ms/5 to 12 axes 3.55ms/13 to 24 axes 7.11ms/25 to 32 axes (Default) (It can be set up by the parameters.)	0.88ms/1 to 4 axes 1.77ms/5 to 8 axes (Default) (It can be set up by the parameters.)	3.55ms/1 to 12 axes 7.11ms/13 to 24 axes 14.2ms/25 to 32 axes	3.55 ms/1 to 8 axes	
	Ser	vo prograi	m capacity			14k steps		13k steps	
l_	Nur	mber of po	sitioning poin	ts	3200 poi	nts/axis (Positioning data	can be designated indir	ectly.)	
control	Pro	gramming	j tool		IBM PC/A	Γ, A31TU-D	PC9800 series, IBM P	C/AT, A30TU, A31TU	
8	Per	ipheral de	vices I/F		USB/RS-23	32/SSCNET	RS-422/S	SSCNET	
Motion	Hor	ne positio	n return funct	ion	Data set type(2 type Stopper type(2 types), L (Home position return	es), Count type(3 types), es), Dog cradle type, imit switch conbined type retry function provided, it function provided)	Proximity dog type, count type, data set type 1		
		nual pulse	generator op	eration		ssible to connect 3 module	s	Possible to connect	
		ncronous e	encoder opera	ation	Possible to connect 12 modules	Possible to connect 8 modules	Possible to connect 4 modules	1 module	
			output function	1		nts : 32points, watch data :		d device	
	Nur (Inc	mber of SS	SCNET Interfaction CNET interfaction computer)	aces	5CH (Note-1)	2CH	4CH	2CH	
	Nur	mber of m	otion slots		·	64 slots ases of the Q series)	8 slots	2 slots	
	Nur	mber of M	otion related r	nodules	Q172LX : 4 modules Q172EX : 6 modules Q173PX : 4 modules (Note-2)	Q172LX : 1 module Q172EX : 4 modules Q173PX : 3 modules (Note-2)	A172SENC : 4 modules	A172SENC : 1 module	
		Normal ta	ask			Executed in motio	n main cycle		
	ation		Event task	Fixed cycle		n fixed cycle 5ms, 7.11ms, 14.2ms)	Executed in (1.77ms, 3.55ms,	*	
SFC	specification	Excuted	(Execution can be	External interrupt	Executed when input o	n is set among interrupt 0) 16 points.	Executed when input on is set among interrupt module(A1SI61) 16 points.		
Motion S	Execute	task	masked.)	PLC interrupt	·	instruction (GINT) from CPU.	Executed when 1 inte		
2	В		NMI task		· ·	n is set among interrupt 0) 16 points.	Executed when inp interrupt module(A	•	
	Nur	mber of I/C	O (X/Y) points			8192 points	·	2048 points	
	Niur	mber of re	al I/O (PX/PY) points		Total 256	ooints		

Differences Between Q173CPU(N)/Q172CPU(N) and A173UHCPU/A172SHCPUN(continued)

Item		Q173CPU(N)	Q172CPU(N)	A173UHCPU	A172SHCPUN	
	Number of Devices (internal motion CPU only)	Internal relays (M) Latch relays (L)	Total M+L : 8192 points		Total M+L(S) : 8192 points	Total M+L(S) : 2048 points
		Link relays (B)	8192 points			1024 points
		Annunciators (F)	2048 points			256 points
		Timer contacts (TT)	_		2048 points	256 points
		Timer coils (TC)	_		2048 points	256 points
\circ		Counter contacts (CT)	_		1024 points	256 points
Motion SFC		Counter coils (CC)	_		1024 points	256 points
		Special relays (M)	256 points			
_		Data registers (D)	8192 points			1024 points
		Link registers (W)	8192 points			1024 points
		Currnet value timers (T)	_		2048 points	256 points
		Currnet value counters (C)		_	1024 points	256 points
		Special registers (D)	256 points			
		Motion registers (#)	8192 points			
	Coasting timer (FT)		1 point (888µs)			
	Device memory		Indep	endence	Commonness	
	Data exchange of PCPU and SCPU			ethod by automatic refresh multiple CPU's.	The direct data exchange method which made a device memory 2 port memory.	
	Fixed parameters	Number of pulses per revolutions	1 to 2147	483647[PLS]	1 to 65535[PLS]	
		Amount of pulses per revolutions		ne unit setup [PLS]. 483647[PLS]	In the case of the unit setup [PLS]. 1 to 65535[PLS]	
S		Magnification	_		\times 1 time, \times 10 times, \times 100 times, \times 100 times	
Others	PLC ready flag (M2000)		M2000 turn it on with switch (STOP → RUN), or M2000 turn it on when both of switch RUN and setting register is set "1".			
	Forced stop input		An optional bit device(PX, M) is specified in the Emergency stop of the CPU base u			
				ncy stop terminals of the ers can be used.)	of the (Forced stop terminals of the servo amplifiers cannot be used.)	
	Back-up battery for internal memory		Internal rech (Set the external bat continuous power off til	argeable battery tery (A6BAT/MR-BAT) if me is longer for 1 month or 2.) (Note-3)	A6BAT/MR-BAT	

⁽Note-1) : Use the Dividing unit (Q173DV) or dividing cable (Q173J2B \triangle CBL \square M/Q173HB \triangle CBL \square M).

⁽Note-2): When using the incremental synchronous encoder (SV22 use), you can use above number of modules. When connecting the Manual pulse generator, you can use only 1 module.

⁽Note-3): When adding the external battery (A6BAT/MR-BAT), Q173DV (Q173CPU(N) use.), or Q170BAT (Q172CPU(N) use.) is used.

1.2.5 Positioning dedicated devices/special relays/special registers

(1) Positioning dedicated devices

The following section describes the positioning dedicated devices.

A range of up to 32 axes is valid in Q173CPU(N), and a range of up to 8 axes is valid in Q172CPU(N).

Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE)", "Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)" for details of the positioning dedicated devices.

(a) Table of the internal relays

Overall configuration

	SV13	SV22		
Device No.	Purpose	Device No.	Purpose	
M0 to	User device (2000 points)	M0 to	User device (2000 points)	
M2000 to	Common device (320 points)	M2000 to	Common device (320 points)	
M2320 to	Special relay allocated device (Status) (80 points)	M2320 to	Special relay allocated device (Status) (80 points)	
M2400 to	Axis status (20 points \times 32 axes)	M2400 to	Axis status (20 points × 32 axes) Real modeEach axis Virtual modeOutput module	
M3040 to	Unusable	M3040 to	Unusable	
M3072 to	Common device (Command signal) (64 points)	M3072 to	Common device (Command signal) (64 points)	
M3136 to	Special relay allocated device (Command signal) (64 points)	M3136 to	Special relay allocated device (Command signal) (64 points)	
M3200 to	Axis command signal (20 points × 32 axes)	M3200 to	Axis command signal (20 points × 32 axes) Real modeEach axis Virtual modeOutput module	
M3840		M3840 to	Unusable (Note-1) (160 points)	
to	User device	M4000 to	Virtual servomotor axis status (Note-1,2) (20 points × 32 axes) (Mechanical system setting axis only)	
	(960 points)	M4640 to	Synchronous encoder axis status (Note-2) (4 points × 12 axes)	
M4799		M4688 to M4799	Unusable (Note-1)	

• Overall configuration(Continued)

SV13			SV22	
Device No.	Purpose	Device No.	Purpose	
M4800		M4800 to	Virtual servomotor axis command signal (Note-1, 2) (20 points × 32 axes)	
			(Mechanical system setting axis only)	
		M5440	Synchronous encoder axis	
		to	command signal (Note-2) (4 points × 12 axes)	
to User device (3392 points)	M5488	Cam axis command signal (Note-1, 2) (1 point × 32 axes)		
	to	(Mechanical system setting axis only)		
		M5520	Smoothing clutch complete signal	
		to	(Note-1, 2) (2 points \times 32 axes)	
		M5584	Unusable (Note-1)	
		to	(16 points)	
		M5600		
		to	User device	
M8191	1		(2592 points)	

(Note-1): It can be used as an user device in the SV22 real mode only.

(Note-2): Do not set the M4000 to M5599 as a latch range in the virtual mode.

MEMO		

1) Table of the axis statuses (SV13/SV22)

Device No.	Signal name	Device No.	Signal name	
M2400		M2720		
to	Axis 1 status	to	Axis 17 status	
M2419		M2739		
M2420		M2740		
to	Axis 2 status	to	Axis 18 status	
M2439		M2759		
M2440		M2760		
to	Axis 3 status	to	Axis 19 status	
M2459		M2779		
M2460		M2780		
to	Axis 4 status	to	Axis 20 status	
M2479		M2799		
M2480		M2800		
to	Axis 5 status	to	Axis 21 status	
M2499		M2819		
M2500		M2820		
to	Axis 6 status	to	Axis 22 status	
M2519		M2839		
M2520		M2840		
to	Axis 7 status	to	Axis 23 status	
M2539		M2859		
M2540		M2860		
to	Axis 8 status	to	Axis 24 status	
M2559		M2879		
M2560		M2880		
to	Axis 9 status	to	Axis 25 status	
M2579		M2899		
M2580		M2900		
to	Axis 10 status	to	Axis 26 status	
M2599		M2919		
M2600		M2920		
to	Axis 11 status	to	Axis 27 status	
M2619		M2939		
M2620		M2940		
to	Axis 12 status	to	Axis 28 status	
M2639		M2959		
M2640		M2960		
to	Axis 13 status	to	Axis 29 status	
M2659		M2979		
M2660		M2980		
to	Axis 14 status	to	Axis 30 status	
M2679		M2999		
M2680		M3000		
to	Axis 15 status	to	Axis 31 status	
M2699		M3019		
M2700		M3020		
to	Axis 16 status	to	Axis 32 status	
M2719		M3039		

• Detailes of each axis

Device No.		Signal name		
M2400 + 20n	Positioning start complete			
M2401 + 20n	Positionin	g complete		
M2402 + 20n	In-position	1		
M2403 + 20n	Comman	d in-position		
M2404 + 20n	Speed co	ntrolling		
M2405 + 20n	Speed/po	sition switching latch signal		
M2406 + 20n	Zero pass	signal		
M2407 + 20n	Error dete	ection signal		
M2408 + 20n	Servo erro	Servo error detection signal		
M2409 + 20n	Home position return request signal			
M2410 + 20n	Home position return completion signal			
M2411 + 20n	FLS signal			
M2412 + 20n	External	RLS signal		
M2413 + 20n	signals	STOP signal		
M2414 + 20n	DOG/CHANGE signal			
M2415 + 20n	Servo ready signal			
M2416 + 20n	Torque limiting signal			
M2417 + 20n	Unusable			
M2418 + 20n	Virtual mode continuation operation disable warning signal (SV22)			
M2419 + 20n	M-code outputting signal			

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N): Axis No.1 to No.32 (n=0 to 31) Q172CPU(N): Axis No.1 to No.8 (n=0 to 7)

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

2) Table of the axis command signals (SV13/SV22)

Device No.	Signal name	Device No.	Signal name
M3200		M3520	
to	Axis 1 command signal	to	Axis 17 command signal
M3219		M3539	
M3220		M3540	
to	Axis 2 command signal	to	Axis 18 command signal
M3239		M3559	
M3240		M3560	
to	Axis 3 command signal	to	Axis 19 command signal
M3259		M3579	
M3260		M3580	
to	Axis 4 command signal	to	Axis 20 command signal
M3279		M3599	o de la companya de
M3280		M3600	
to	Axis 5 command signal	to	Axis 21 command signal
M3299		M3619	
M3300		M3620	
to	Axis 6 command signal	to	Axis 22 command signal
M3319		M3639	
M3320		M3640	
to	Axis 7 command signal	to	Axis 23 command signal
M3339	7 bilo 7 dominana dignar	M3659	7 the 20 command digital
M3340		M3660	
to	Axis 8 command signal	to	Axis 24 command signal
M3359	7 000 0 00mmana dignar	M3679	7 Kilo 24 Goriimana Signal
M3360		M3680	
to	Axis 9 command signal	to	Axis 25 command signal
M3379	Axis 9 command signal	M3699	Axis 25 command signal
M3380		M3700	
to	Axis 10 command signal	to	Axis 26 command signal
M3399	Axis to command signal	M3719	Axis 20 command signal
M3400		M3720	
to	Axis 11 command signal	to	Axis 27 command signal
M3419	Axis 11 command signal	M3739	Axis 27 Command Signal
M3420	Avia 12 command signal	M3740	Avia 29 command signal
to	Axis 12 command signal	to	Axis 28 command signal
M3439 M3440		M3759 M3760	
	Avia 12 command signal		Avia 20 command signal
to	Axis 13 command signal	to	Axis 29 command signal
M3459		M3779	
M3460	Avio 14 comment delere	M3780	Avia 20 comment of size -1
to	Axis 14 command signal	to	Axis 30 command signal
M3479		M3799	
M3480	Avia 45	M3800	Avia Od comment I i
to	Axis 15 command signal	to	Axis 31 command signal
M3499		M3819	
M3500		M3820	
to	Axis 16 command signal	to	Axis 32 command signal
M3519		M3839	

• Detailes of each axis

Device No.	SV13	SV22
M3200 + 20n	Stop command	Stop command
M3201 + 20n	Rapid stop command	Rapid stop command
M3202 + 20n	Forward rotation JOG start command	Forward rotation JOG start command
M3203 + 20n	Reverse rotation JOG start command	Reverse rotation JOG start comannd
M3204 + 20n	Complete signal OFF command	Complete signal OFF command
M3205 + 20n	Speed/position switching enable command	Speed/position switching enable comannd
M3206 + 20n	Unusable	Unusable
M3207 + 20n	Error reset command	Error reset command
M3208 + 20n	Servo error reset command	Servo error reset command
M3209 + 20n	External stop input disable at start command	External stop input disable at start command
M3210 + 20n	I lava alda	Havashla
M3211 + 20n	Unusable	Unusable
M3212 + 20n	Feed current value update request command	Feed current value update request command
M3213 + 20n	Userable	Address clutch reference setting command
M3214 + 20n	- Unusable	Cam reference position setting command
M3215 + 20n	Servo OFF command	Servo OFF command
M3216 + 20n	Gain changing command	Gain changing command
M3217 + 20n	Llavashla	Havaahla
M3218 + 20n	Unusable	Unusable
M3219 + 20n	FIN signal	FIN signal

 $\hbox{(Note-1):"n" in the above device No. shows the numerical value which correspond to axis No.}\\$

Q173CPU(N): Axis No.1 to No.32 (n=0 to 31) Q172CPU(N): Axis No.1 to No.8 (n=0 to 7)

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

3) Table of the virtual servomotor axis statuses (SV22 only)

Device No.	Signal name	Device No.	Signal name
M4000		M4320	
to	Axis 1 status	to	Axis 17 status
M4019		M4339	
M4020		M4340	
to	Axis 2 status	to	Axis 18 status
M4039		M4359	
M4040		M4360	
to	Axis 3 status	to	Axis 19 status
M4059		M4379	
M4060		M4380	
to	Axis 4 status	to	Axis 20 status
M4079		M4399	
M4080		M4400	
to	Axis 5 status	to	Axis 21 status
M4099		M4419	
M4100		M4420	
to	Axis 6 status	to	Axis 22 status
M4119		M4439	
M4120		M4440	
to	Axis 7 status	to	Axis 23 status
M4139		M4459	
M4140		M4460	
to	Axis 8 status	to	Axis 24 status
M4159		M4479	
M4160		M4480	
to	Axis 9 status	to	Axis 25 status
M4179		M4499	
M4180		M4500	
to	Axis 10 status	to	Axis 26 status
M4199		M4519	
M4200		M4520	
to	Axis 11 status	to	Axis 27 status
M4219		M4539	
M4220		M4540	
to	Axis 12 status	to	Axis 28 status
M4239		M4559	
M4240		M4560	
to	Axis 13 status	to	Axis 29 status
M4259		M4579	
M4260		M4580	
to	Axis 14 status	to	Axis 30 status
M4279		M4599	
M4280		M4600	
to	Axis 15 status	to	Axis 31 status
M4299		M4619	
M4300		M4620	
to	Axis 16 status	to	Axis 32 status
M4319		M4639	

Detailes of each axis

Device No.	Signal name	
M4000 + 20n	Positioning start complete	
M4001 + 20n	Positioning complete	
M4002 + 20n	Unusable	
M4003 + 20n	Command in-position	
M4004 + 20n	Speed controlling	
M4005 + 20n	Unusable	
M4006 + 20n	Offusable	
M4007 + 20n	Error detection	
M4008 + 20n		
M4009 + 20n		
M4010 + 20n		
M4011 + 20n		
M4012 + 20n		
M4013 + 20n	Unusable	
M4014 + 20n		
M4015 + 20n		
M4016 + 20n		
M4017 + 20n		
M4018 + 20n		
M4019 + 20n	M-code outputting signal	

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N): Axis No.1 to No.32 (n=0 to 31) Q172CPU(N): Axis No.1 to No.8 (n=0 to 7)

(Note-2): The unused axis areas in the mechanical system program can be used as an user device.

4) Table of the virtual servomotor axis command signals (SV22 only)

Device No.	Signal name	Device No.	Signal name
M4800		M5120	
to	Axis 1 command signal	to	Axis 17 command signal
M4819		M5139	
M4820		M5140	
to	Axis 2 command signal	to	Axis 18 command signal
M4839		M5159	
M4840		M5160	
to	Axis 3 command signal	to	Axis 19 command signal
M4859	7 buo o commana cignal	M5179	7 bus 10 deminant eight.
M4860		M5180	
to	Axis 4 command signal	to	Axis 20 command signal
M4879	Axis 4 command signal	M5199	Axis 20 command signal
M4880		M5200	
	Avia E command signal		Avis 21 semmand signal
to	Axis 5 command signal	to	Axis 21 command signal
M4899		M5219	
M4900		M5220	
to	Axis 6 command signal	to	Axis 22 command signal
M4919		M5239	
M4920		M5240	
to	Axis 7 command signal	to	Axis 23 command signal
M4939		M5259	
M4940		M5260	
to	Axis 8 command signal	to	Axis 24 command signal
M4959		M5279	
M4960		M5280	
to	Axis 9 command signal	to	Axis 25 command signal
M4979		M5299	
M4980		M5300	
to	Axis 10 command signal	to	Axis 26 command signal
M4999		M5319	
M5000		M5320	
to	Axis 11 command signal	to	Axis 27 command signal
M5019		M5339	
M5020		M5340	
to	Axis 12 command signal	to	Axis 28 command signal
M5039		M5359	
M5040		M5360	
to	Axis 13 command signal	to	Axis 29 command signal
M5059		M5379	
M5060		M5380	
to	Axis 14 command signal	to	Axis 30 command signal
M5079	2 22	M5399	
M5080		M5400	
to	Axis 15 command signal	to	Axis 31 command signal
M5099	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M5419	. sac c. communa orginal
M5100		M5420	
to	Axis 16 command signal		Axis 32 command signal
	Axis to continuatio signal	to M5430	AND DE COMMINATIO SIGNAL
M5119	l	M5439	

• Detailes of each axis

Device No.	Signal name
M4800 + 20n	Stop command
M4801 + 20n	Rapid stop command
M4802 + 20n	Forward rotation JOG start command
M4803 + 20n	Reverse rotation JOG start command
M4804 + 20n	Complete signal OFF command
M4805 + 20n	Unusable
M4806 + 20n	Offusable
M4807 + 20n	Error reset command
M4808 + 20n	Unusable
M4809 + 20n	External stop input disable at start command
M4810 + 20n	
M4811 + 20n	
M4812 + 20n	
M4813 + 20n	
M4814 + 20n	Unusable
M4815 + 20n	
M4816 + 20n	
M4817 + 20n	
M4818 + 20n	
M4819 + 20n	FIN signal

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N): Axis No.1 to No.32 (n=0 to 31) Q172CPU(N): Axis No.1 to No.8 (n=0 to 7)

(Note-2): The unused axis areas in the mechanical system program can be used as an user device.

5) Table of the synchronous encoder axis statuses (SV22 only)

Device No.		Signal name
M4640		Error detection
M4641	Assis 4	External signal TREN
M4642	Axis 1	Virtual mode continuation operation disable warning
M4643	1	Unusable
M4644		Error detection
M4645	Axis 2	External signal TREN
M4646	AXIS 2	Virtual mode continuation operation disable warning
M4647		Unusable
M4648		Error detection
M4649	Axis 3	External signal TREN
M4650	AXIS 3	Virtual mode continuation operation disable warning
M4651		Unusable
M4652		Error detection
M4653	Axis 4	External signal TREN
M4654	AXIS 4	Virtual mode continuation operation disable warning
M4655		Unusable
M4656		Error detection
M4657	Axis 5	External signal TREN
M4658	AXIS 3	Virtual mode continuation operation disable warning
M4659		Unusable
M4660		Error detection
M4661	Axis 6	External signal TREN
M4662	7013 0	Virtual mode continuation operation disable warning
M4663		Unusable
M4664		Error detection
M4665	Axis 7	External signal TREN
M4666	7 54.5 7	Virtual mode continuation operation disable warning
M4667		Unusable
M4668		Error detection
M4669	Axis 8	External signal TREN
M4670	, , , , ,	Virtual mode continuation operation disable warning
M4671		Unusable
M4672	<u> </u>	Error detection
M4673	Axis 9	External signal TREN
M4674	1	Virtual mode continuation operation disable warning
M4675		Unusable
M4676	-	Error detection
M4677	Axis 10	External signal TREN
M4678	-	Virtual mode continuation operation disable warning
M4679		Unusable
M4680	-	Error detection
M4681	Axis 11	External signal TREN
M4682	-	Virtual mode continuation operation disable warning
M4683		Unusable
M4684	-	Error detection
M4685	Axis 12	External signal TREN
M4686	-	Virtual mode continuation operation disable warning
M4687		Unusable

(Note-1): The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-2) : Device area of 9 axes or more is unusable in the Q172CPU(N).

6) Table of the syncronous encoder axis command signals (SV22 only)

M5440 M5441 M5442 M5443 M5444 M5445 M5446 M5447 M5448 M5449 M5450 M5451	Axis 1 Axis 2	Error reset Unusable Unusable Unusable Error reset Unusable
M5442 M5443 M5444 M5445 M5446 M5447 M5448 M5449 M5450		Unusable Unusable Error reset
M5443 M5444 M5445 M5446 M5447 M5448 M5449 M5450		Unusable Error reset
M5444 M5445 M5446 M5447 M5448 M5449 M5450	Axis 2	Error reset
M5445 M5446 M5447 M5448 M5449 M5450	Axis 2	
M5446 M5447 M5448 M5449 M5450	Axis 2	Unusable
M5447 M5448 M5449 M5450	AXIS 2	
M5448 M5449 M5450		Unusable
M5449 M5450		Unusable
M5450		Error reset
	A.d. O	Unusable
M5451	Axis 3	Unusable
		Unusable
M5452		Error reset
M5453		Unusable
M5454	Axis 4	Unusable
M5455		Unusable
M5456		Error reset
M5457		Unusable
M5458	Axis 5	Unusable
M5459		Unusable
M5460		Error reset
M5461	4 . 0	Unusable
M5462	Axis 6	Unusable
M5463		Unusable
M5464		Error reset
M5465		Unusable
M5466	Axis 7	Unusable
M5467		Unusable
M5468		Error reset
M5469	4 . 0	Unusable
M5470	Axis 8	Unusable
M5471		Unusable
M5472		Error reset
M5473		Unusable
M5474	Axis 9	Unusable
M5475		Unusable
M5476		Error reset
M5477	A.d. 40	Unusable
M5478	Axis 10	Unusable
M5479		Unusable
M5480		Error reset
M5481		Unusable
M5482	Axis 11	Unusable
M5483		Unusable
M5484		Error reset
M5485		Unusable
M5486	Axis 12	Unusable
M5487		Unusable

(Note-1): The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-2) : Device area of 9 axes or more is unusable in the Q172CPU(N).

7) Table of the cam axis command signals (SV22 only)

Device No.	Signal name
M5488	Axis 1 cam/ballscrew switching
M5489	Axis 2 cam/ballscrew switching
M5490	Axis 3 cam/ballscrew switching
M5491	Axis 4 cam/ballscrew switching
M5492	Axis 5 cam/ballscrew switching
M5493	Axis 6 cam/ballscrew switching
M5494	Axis 7 cam/ballscrew switching
M5495	Axis 8 cam/ballscrew switching
M5496	Axis 9 cam/ballscrew switching
M5497	Axis 10 cam/ballscrew switching
M5498	Axis 11 cam/ballscrew switching
M5499	Axis 12 cam/ballscrew switching
M5500	Axis 13 cam/ballscrew switching
M5501	Axis 14 cam/ballscrew switching
M5502	Axis 15 cam/ballscrew switching
M5503	Axis 16 cam/ballscrew switching
M5504	Axis 17 cam/ballscrew switching
M5505	Axis 18 cam/ballscrew switching
M5506	Axis 19 cam/ballscrew switching
M5507	Axis 20 cam/ballscrew switching
M5508	Axis 21 cam/ballscrew switching
M5509	Axis 22 cam/ballscrew switching
M5510	Axis 23 cam/ballscrew switching
M5511	Axis 24 cam/ballscrew switching
M5512	Axis 25 cam/ballscrew switching
M5513	Axis 26 cam/ballscrew switching
M5514	Axis 27 cam/ballscrew switching
M5515	Axis 28 cam/ballscrew switching
M5516	Axis 29 cam/ballscrew switching
M5517	Axis 30 cam/ballscrew switching
M5518	Axis 31 cam/ballscrew switching
M5519	Axis 32 cam/ballscrew changing

(Note-1) : The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

(Note-3): The unused aixs areas in the cam axis command signal can be used as an user device.

8) Table of the smoothing clutch complete signals (SV22 only)

Device No.	Sian	al name	Refresh cycle	Fetch cycle	Signal direction	Remark
M5520	,	Main shaft side				
M5521	Output axis 1	Auxiliary input side	1	1		
M5522		Main shaft side				
M5523	Output axis 2	Auxiliary input side				
M5524		Main shaft side	1	1		
M5525	Output axis 3	Auxiliary input side	1	11		
M5526		Main shaft side		1		
M5527	Output axis 4	Auxiliary input side	1			
M5528		Main shaft side	1	1 1		
M5529	Output axis 5	Auxiliary input side	1			
M5530		Main shaft side				
M5531	Output axis 6	Auxiliary input side				
M5532		Main shaft side				
M5533	Output axis 7	Auxiliary input side				
M5534		Main shaft side				
M5535	Output axis 8	Auxiliary input side				
M5536		Main shaft side		1 1		
M5537	Output axis 9	Auxiliary input side				
M5538		Main shaft side	1			
M5539	Output axis 10	Auxiliary input side	1]]]		
M5540		Main shaft side	1			
M5541	Output axis 11	Auxiliary input side	1]]		
M5542	0.1.1.1.1	Main shaft side	1			
M5543	Output axis 12	Auxiliary input side	1]]		
M5544		Main shaft side	1			
M5545	Output axis 13	Auxiliary input side				
M5546		Main shaft side				
M5547	Output axis 14	Auxiliary input side				
M5548		Main shaft side	1			
M5549	Output axis 15	Auxiliary input side	1			
M5550		Main shaft side				
M5551	Output axis 16	Auxiliary input side	1			
M5552		Main shaft side	Operation cycle		Status signal	
M5553	Output axis 17	Auxiliary input side	Operation cycle		Otatus signai	
M5554		Main shaft side				
M5555	Output axis 18					
		Auxiliary input side	1			
M5556 M5557	Output axis 19	Main shaft side	1			
		Auxiliary input side Main shaft side	1			
M5558 M5559	Output axis 20					
M5560		Auxiliary input side Main shaft side				
M5561	Output axis 21	Auxiliary input side	1			
M5562		Main shaft side	1	1 1		
	Output axis 22	_	1			
M5563		Auxiliary input side	1	1 1 1		
M5564	Output axis 23	Main shaft side	-]]		
M5565		Auxiliary input side	-			
M5566	Output axis 24	Main shaft side	4			
M5567	·	Auxiliary input side]]		
M5568	Output axis 25	Main shaft side				
M5569		Auxiliary input side	1			
M5570	Output axis 26	Main shaft side				
M5571	- 3401 0110 20	Auxiliary input side]			
M5572	Output axis 27	Main shaft side	1			
M5573	Ουιμαι αλίο ΔΙ	Auxiliary input side]] [
M5574	Output evice 20	Main shaft side]			
M5575	Output axis 28	Auxiliary input side		1 /		
M5576		Main shaft side	1	1 /		
M5577	Output axis 29	Auxiliary input side	1	1/		
M5578		Main shaft side	1] [
M5579	Output axis 30	Auxiliary input side	1]]		
M5580		Main shaft side	1]]		
M5581	Output axis 31	Auxiliary input side	1]		
M5582		Main shaft side	1]		
M5583	Output axis 32	Auxiliary input side	†	y		
MICCOC		Auviliar & Illhar side	1			

(Note-1): The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

 $(\hbox{Note-3}): The \ unused \ aixs \ areas \ in \ the \ mechanical \ system \ program \ can \ be \ used \ as \ an \ user \ device.$

9) Table of the common devices (SV13/SV22)

	SV13			S	V22	Refresh	Fetch	Signal	Remark (Note-4)
Device No.		Signal name	Device No.	Signal name		cycle	cycle	direction	(Note-4)
M2000	PLC read	ly flag	M2000	PLC read	dy flag		Main cycle	Command signal (Note-1)	M3072
M2001	Axis1		M2001	Axis1				Status	
to	to	Start accept flag (32 points)	to	to	Start accept flag (32 points)	Operation cycle		signal (Note-2, 3)	
M2032	Axis32	,	M2032	Axis32	, ,				
M2033	Unusable)	M2033	Unusable	е	_	_	-	
M2034		computer link cation error flag	M2034		computer link ication error flag	Operation cycle		Status signal	
M2035	Motion S request f	FC error history clear (Note-5)	M2035	Motion S request f	FC error history clear (Note-5)		Main cycle	Command signal	M3080
M2036	Llausable		M2036	Unusable					
M2037	Unusable	•	M2037	Unusable	=	_			
M2038	Motion S	FC debugging flag	M2038	Motion S	FC debugging flag	At debug mode transition		Status signal	
M2039	Motion S	FC error detection flag	M2039	Motion S	FC error detection flag		Immedi- ate	Status signal	
M2040	Speed sv	vitching point specified	M2040	Speed switcing point specified flag			At start	Command signal (Note-1)	M3073
M2041	System s	etting error flag	M2041	System setting error flag		Operation cycle		Status signal	
M2042	All axes	servo ON command	M2042	All axes	servo ON command		Operation cycle	Command signal	M3074
M2043			M2043	Real mod	de/virtual mode g request		At virtual mode transition	(Note-1)	M3075
M2044	Unusable	;	M2044	Real mode/virtual mode switching status		At virtual			
M2045			M2045		de/virtual mode g error detection flag	mode transition		Status signal	
M2046			M2046	Out-of-sy	nc warning				
M2047	Motion sl	ot fault detection flag	M2047	Motion s	lot fault detection flag	Operation cycle			
M2048	JOG ope	ration simultaneous start	M2048	JOG operation simultaneous start command			Main cycle	Command signal (Note-1)	M3076
M2049	All axes	servo ON accept flag	M2049	All axes servo ON accept flag		Operation cycle		Status signal	
M2050	Unusable)	M2050	Unusable	е	_	_	_	
M2051	Manual p	ulse generator 1 enable	M2051	Manual p	oulse generator 1 enable				M3077
M2052	Manual p	ulse generator 2 enable	M2052	Manual p	oulse generator 2 enable		Main cycle	Command signal (Note-1)	M3078
M2053	Manual p	ulse generator 3 enable	M2053	Manual p	oulse generator 3 enable				M3079

Table of the common devices (SV13/SV22) (continued)

	S\	/13	SV22		Refresh	Fetch	Signal	Remark								
Device No.		Signal name	Device No.		Signal name		cycle	cycle	direction	(Note-4)						
M2054	Operation	cycle over flag	M2054	Operation	n cycle over flag		Operation cycle		Status signal							
M2055			M2055													
to	Unusable		to	Unusable	е		_	_	_							
M2060			M2060													
M2061	Axis 1		M2061	Axis 1					Status							
to	to	Speed changing flag (32 axes)	to	to	Speed changing (32 axes)	g flag	Operation cycle		signal (Note-2, 3)							
M2092	Axis 32	(32 dxes)	M2092	Axis 32	(32 axes)		.,		(14010-2, 0)							
M2093			M2093		L											
			to	Unusable	Э		_	_	_							
			M2100	-												
			M2101	Axis 1	Synchronous e	ncoder		/	01.1							
to	Unusable		to	to	current value ch	nanging	Operation cycle		Status signal (Note-2, 3)							
			M2112	Axis 12	flag (12 axes)		oyo.c									
			M2113		, ,											
			to	Unusable	Unusable		_	_	_							
M2127			M2127	-												
M2128	Axis 1	Automatic decolorating	M2128	Axis 1	Automatia daga	loroting										
to	to	Automatic decelerating flag	to	to	Automatic dece	sici atii ig		/								
M2159	Axis 32	(32 axes)	M2159	Axis 32	(32 axes)											
M2160			M2160	Output	Main shaft side											
			M2161	axis 1	Auxiliary input side	Clutch	Operation cycle	/	Status signal (Note-2, 3)							
			to	to	to	status		/	(111 , 1)							
to	Unusable		M2222	Output	Main shaft side	(Note-6)										
			M2223	axis 32	Auxiliary input side											
			M2224													
			to	Unusable		_	_	_								
M2239			M2239													
M2240	Axis 1	Speed change "0"	M2240	Axis 1	Speed change	"0"			Status							
to	to	accepting flag	to	to	accepting flag		Operation cycle		signal (Note-2, 3)							
M2271	Axis 32	(32 axes)	M2271	Axis 32	(32 axes)			/								
M2272			M2272	Unusable				_								
to	Unusable		to			_	_									
M2319			M2319													

Explanation of the request register

No.	Function	Bit device	Request register
1	PLC ready flag	M2000	D704
2	Speed switching point specified flag	M2040	D705
3	All axes servo ON command	M2042	D706
4	Real mode/virtual mode switching request (SV22)	M2043	D707
5	JOG operation simultaneous start command	M2048	D708
6	Manual pulse generator 1 enable flag	M2051	D755
7	Manual pulse generator 2 enable flag	M2052	D756
8	Manual pulse generator 3 enable flag	M2053	D757

(Note-1): Handling of D704 to D708 and D755 to D757 register

Because cannot be turn ON/OFF for every bit from the PLC CPU, the above bit devices are assigned to D register, and each bit device becomes on with the lowest rank bit $0 \rightarrow 1$ of each register, and each bit device becomes off with $1 \rightarrow 0$.

Use it when the above functions are requested from the PLC CPU using the S(P).DDRD and S(P).DDWR instruction. Refer to "5 MOTION DEDICATED PLC INSTRUCTION" for S(P).DDRD and S(P).DDWR instruction.

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

(Note-3): The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-4): It can also be ordered the device of a remark column.

(Note-5): M3080 does not turn off automatically. Turn it off as an user side.

(Note-6): It is unusable in the SV22 real mode.

 The data executed later becomes effective when the same device is executed simultaneously in the Motion SFC and PLC program.

10) Table of the special relay allocated devices (Status) (SV13/SV22)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note)
M2320	Fuse blown detection				M9000
M2321	AC/DC DOWN detection				M9005
M2322	Battery low	Error			M9006
M2323	Battery low latch	occurrence			M9007
M2324	Self-diagnostic error				M9008
M2325	Diagnostic error				M9010
M2326	Always ON	Main			M9036
M2327	Always OFF	operation			M9037
M2328	Clock data error	Error			M9026
M2329	PCPU WDT error flag	occurrence			M9073
M2330	PCPU READY complete flag	At request			M9074
M2331	Test mode ON flag	At request			M9075
M2332	External forced stop input flag	Operation cycle			M9076
M2333	Manual pulse generator axis setting error flag	- Error		Status signal	M9077
M2334	TEST mode request error flag	occurrence			M9078
M2335	Servo program setting error flag				M9079
M2336	CPU No.1 reset flag				M9240
M2337	CPU No.2 reset flag				M9241
M2338	CPU No.3 reset flag				M9242
M2339	CPU No.4 reset flag	At Status			M9243
M2340	CPU No.1 error flag	change			M9244
M2341	CPU No.2 error flag				M9245
M2342	CPU No.3 error flag				M9246
M2343	CPU No.4 error flag				M9247
M2344	Servo parameter reading flag	At request			M9105
M2345	CPU No.1 MULTR complete flag				M9216
M2346	CPU No.2 MULTR complete flag	At instruction			M9217
M2347	CPU No.3 MULTR complete flag	completion			M9218
M2348	CPU No.4 MULTR complete flag				M9219
M2349					
to	Unusable	_	_	_	_
M2399					

(Note) : The same status as a remark column is output.

Table of the common devices (Command signal) (SV13/SV22)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1) , (Note-2)
M3072	PLC ready flag	/	Main cycle		M2000
M3073	Speed switching point specified flag		At start		M2040
M3074	All axes servo ON command		Operation cycle		M2042
M3075	Real mode/virtual mode change request (SV22)		At virtual mode transition		M2043
M3076	JOG operation simultaneous start command			Command signal	M2048
M3077	Manual pulse generator 1 enable flag				M2051
M3078	Manual pulse generator 2 enable flag		Main cycle		M2052
M3079	Manual pulse generator 3 enable flag				M2053
M3080	Motion SFC error history clear request flag (Note-3)				M2035
M3081					
to	Unusable	_	_	_	_
M3135			_		

(Note-1): The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns

OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly. In addition, when the request from a data register and the request from the above device are performed simultaneously, the request from the above device becomes effective.

(Note-2): It can also be ordered the device of a remark column.

(Note-3): M3080 does not turn off automatically. Turn it off as an user side.

12) Table of the special relay allocated devices (Command signal) (SV13/SV22)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1), (Note-2)
M3136	Clock data set request				M9025
M3137	Clock data read request		Main avala	Command signal	M9028
M3138	Error reset		Main cycle		M9060
M3139	Servo parameter read request flag				M9104
M3140					
to	Unusable	_	_	_	_
M3199					

(Note-1): The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly.

(Note-2): It can also be ordered the device of a remark column.

(b) Table of the data registers

Overall configuration

	SV13	SV22			
Device No.	Application	Device No.	Application		
D0 to	Axis monitor device (20 points × 32 axes)	D0 to	Axis monitor device (20 points × 32 axes) Real modeEach axis Virtual modeOutput module		
D640 to	Control change register (2 points × 32 axes)	D640 to	Control change register (2 points × 32 axes)		
D704 to	Common device (Command signal) (54 points)	D704 to	Common device (Command signal) (54 points)		
D758 to	Common device (Monitor) (42points)	D758 to	Common device (Monitor) (42points)		
D800		D800 to	Virtual servomotor axis monitor device (Note) (10 points × 32 axes) (Mechanical system setting axis only)		
		D1120	Syncronous encoder axis monitor device (Note) (10 points × 12 axes)		
		D1240 to	Cam axis monitor device $^{\text{(Note)}}$ (10 points $ imes$ 32 axes)		
to	User device (7392 points)	D1560	User device (6632 points)		
D8191		D8191			

(Note): It can be used as an user device in the SV22 real mode only.

1) Table of the each axis monitor devices (SV13/SV22)

Device No.	Signal name	Device No.	Signal name
D0		D320	
to	Axis 1 monitor device	to	Axis 17 monitor device
D19		D339	
D20		D340	
to	Axis 2 monitor device	to	Axis 18 monitor device
D39		D359	
D40		D360	
to	Axis 3 monitor device	to	Axis 19 monitor device
D59		D379	
D60		D380	
to	Axis 4 monitor device	to	Axis 20 monitor device
D79		D399	
D80		D400	
to	Axis 5 monitor device	to	Axis 21 monitor device
D99		D419	
D100		D420	
to	Axis 6 monitor device	to	Axis 22 monitor device
D119	7 5 40 5 1110111101 401100	D439	7 840 22 1110111101 401100
D120		D440	
to	Axis 7 monitor device	to	Axis 23 monitor device
D139	7 the 7 monitor device	D459	7 Buo 20 Monitor device
D140		D460	
to	Axis 8 monitor device	to	Axis 24 monitor device
D159	7 tale o monator device	D479	, but I i mornitor dovice
D160		D480	
to	Axis 9 monitor device	to	Axis 25 monitor device
D179	7 Mio o monitor devide	D499	7 Mio 20 Monitor device
D180		D500	
to	Axis 10 monitor device	to	Axis 26 monitor device
D199	7 UNIO TO INICIINO GOVICO	D519	7 Buo 20 Monitor device
D200		D520	
to	Axis 11 monitor device	to	Axis 27 monitor device
D219	7 tals 11 monitor device	D539	7 Mio 27 Monitor device
D220		D540	
to	Axis 12 monitor device	to	Axis 28 monitor device
D239	7 MIO 12 IIIOIIIIOI UEVICE	D559	7 WIG 20 HIGHIROF GEVICE
D240		D560	
to	Axis 13 monitor device	to	Axis 29 monitor device
D259	, Mo 10 monitor device	D579	, MIO 20 MONITOR GOVIDE
D260		D580	
to	Axis 14 monitor device	to	Axis 30 monitor device
D279	AND 14 HOHILOI GEVICE	D599	TAIS SO MOMILUM GEVICE
D280		D600	
to	Axis 15 monitor device	to	Axis 31 monitor device
D299	AND TO MONITOR GEVICE	D619	, wis or mornion device
D300		D620	
to	Axis 16 monitor device	to	Axis 32 monitor device
D319	AND TO MODILIOI GEVICE	D639	ANIS OF MOUNTAIN ACTION
פונע		פנטם	

Detailes of each axis

Device No.	SV13/SV22(Real mode)	SV22(Virtual mode)	Signal derection
D0 + 20n D1 + 20n	Feed current value	Feed current value/roller cycle speed	
D2 + 20n D3 + 20n	Real current value	Real current value	
D4 + 20n D5 + 20n	Deviation counter value	Deviation counter value	
D6 + 20n	Minor error code	Minor error code	
D7 + 20n	Major error code	Major error code	
D8 + 20n	Servo error code	Servo error code	Monitor device
D9 + 20n	Home position return re-travel value	Hold	Worldor device
D10 + 20n D11 + 20n	Travel value after proximity dog ON	Hold	
D12 + 20n	Execute program No.	_	
D13 + 20n	M-code	_	
D14 + 20n	Torque limit value	Torque limit value	
D15 + 20n	Data set pointer for constant- speed control	_	
D16 + 20n D17 + 20n	Travel value change register	_	Command device
D18 + 20n D19 + 20n	Real current value at stop input	Hold	Monitor device

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N) : Axis No.1 to No.32 (n=0 to 31) Q172CPU(N) : Axis No.1 to No.8 (n=0 to 7)

(Note-2) : Device area of 9 axes or more is unusable in the Q172CPU(N).

2) Table of the control change registers (SV13/SV22)

Device No.	Signal name	Device No.	Signal name
D640	Axis 1 JOG speed	D672	Axis 17 JOG speed
D641	setting register	D673	setting register
D642	Axis 2 JOG speed	D674	Axis 18 JOG speed
D643	setting register	D675	setting register
D644	Axis 3 JOG speed	D676	Axis 19 JOG speed
D645	setting register	D677	setting register
D646	Axis 4 JOG speed	D678	Axis 20 JOG speed
D647	setting register	D679	setting register
D648	Axis 5 JOG speed	D680	Axis 21 JOG speed
D649	setting register	D681	setting register
D650	Axis 6 JOG speed	D682	Axis 22 JOG speed
D651	setting register	D683	setting register
D652	Axis 7 JOG speed	D684	Axis 23 JOG speed
D653	setting register	D685	setting register
D654	Axis 8 JOG speed	D686	Axis 24 JOG speed
D655	setting register	D687	setting register
D656	Axis 9 JOG speed	D688	Axis 25 JOG speed
D657	setting register	D689	setting register
D658	Axis 10 JOG speed	D690	Axis 26 JOG speed
D659	setting register	D691	setting register
D660	Axis 11 JOG speed	D692	Axis 27 JOG speed
D661	setting register	D693	setting register
D662	Axis 12 JOG speed	D694	Axis 28 JOG speed
D663	setting register	D695	setting register
D664	Axis 13 JOG speed	D696	Axis 29 JOG speed
D665	setting register	D697	setting register
D666	Axis 14 JOG speed	D698	Axis 30 JOG speed
D667	setting register	D699	setting register
D668	Axis 15 JOG speed	D700	Axis 31 JOG speed
D669	setting register	D701	setting register
D670	Axis 16 JOG speed	D702	Axis 32 JOG speed
D671	setting register	D703	setting register

MEMO		

3) Table of the virtual servomotor axis monitor devices (SV22 only)

D800 Axis 1 monitor device D960 Axis 17 monitor device D809 D810 D970 Axis 18 monitor device D810 D970 Axis 18 monitor device D819 D970 Axis 18 monitor device D819 D980 Axis 19 monitor device D820 D980 Axis 19 monitor device D829 D989 Axis 20 monitor device D830 D990 Axis 20 monitor device D839 D1000 Axis 21 monitor device D840 D1000 Axis 21 monitor device D849 D1000 Axis 21 monitor device D849 D1009 Axis 22 monitor device D849 D1010 Axis 22 monitor device D859 D1010 Axis 22 monitor device D859 D1020 Axis 23 monitor device D860 Axis 7 monitor device D1029 D870 Axis 8 monitor device D1039 D870 Axis 8 monitor device Axis 24 monitor device D889 D1049 Axis 25 monitor device	Device No.	Signal name	Device No.	Signal name
D809 D969 D810 Axis 2 monitor device D970 D819 D980 Axis 18 monitor device D820 D980 Axis 19 monitor device D829 D980 Axis 19 monitor device D830 D990 Axis 20 monitor device D839 D999 Axis 20 monitor device D839 D999 Axis 20 monitor device D840 D1000 Axis 21 monitor device D840 D1009 Axis 21 monitor device D849 D1010 Axis 22 monitor device D850 D1010 Axis 22 monitor device D850 D1029 Axis 23 monitor device D860 D1029 Axis 23 monitor device D860 D1029 Axis 24 monitor device D870 D1030 Axis 24 monitor device D879 D1040 Axis 24 monitor device D880 D1040 Axis 25 monitor device D890 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device	D800		D960	
D809 D969 D810 Axis 2 monitor device D970 D819 D980 Axis 18 monitor device D820 D980 Axis 19 monitor device D829 D980 Axis 19 monitor device D830 D990 Axis 20 monitor device D839 D999 Axis 20 monitor device D839 D999 Axis 20 monitor device D840 D1000 Axis 21 monitor device D840 D1009 Axis 21 monitor device D849 D1010 Axis 22 monitor device D850 D1010 Axis 22 monitor device D850 D1029 Axis 23 monitor device D860 D1029 Axis 23 monitor device D860 D1029 Axis 24 monitor device D870 D1030 Axis 24 monitor device D879 D1040 Axis 24 monitor device D880 D1040 Axis 25 monitor device D890 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device	to	Axis 1 monitor device	to	Axis 17 monitor device
D810 Axis 2 monitor device D970 Axis 18 monitor device D819 D820 Axis 3 monitor device D980 Axis 19 monitor device D820 D980 Axis 19 monitor device D989 Axis 19 monitor device D830 D990 Axis 20 monitor device Axis 20 monitor device D999 D840 D1000 Axis 21 monitor device D1009 D840 Axis 5 monitor device D1009 Axis 21 monitor device D849 D1009 Axis 21 monitor device D1010 Axis 22 monitor device D849 D1010 Axis 22 monitor device D1019 D1019			D969	
to D819 Axis 2 monitor device to D979 Axis 18 monitor device D820 to Axis 3 monitor device D980 to Axis 19 monitor device D829 D830 D990 Axis 20 monitor device D839 D990 Axis 20 monitor device D839 D840 D1000 Axis 20 monitor device D849 D1000 Axis 21 monitor device D1009 D849 D1009 Axis 21 monitor device Axis 22 monitor device D849 D1010 Axis 22 monitor device Axis 22 monitor device D850 D1010 Axis 22 monitor device Axis 22 monitor device D860 D1020 Axis 23 monitor device Axis 23 monitor device D869 D1029 Axis 23 monitor device D1030 Axis 24 monitor device D879 D1030 Axis 24 monitor device D1040 Axis 25 monitor device D880 D1040 D1040 Axis 25 monitor device D1049 D890 D1050 Axis 26 monitor device D1059 D900 Axis 11 monitor device <			1	
D820 Axis 3 monitor device D980 Axis 19 monitor device D829 D830 D990 Axis 20 monitor device D830 D990 Axis 20 monitor device D999 D840 D1000 Axis 21 monitor device Axis 21 monitor device D849 D1009 Axis 21 monitor device Axis 21 monitor device D849 D1009 Axis 22 monitor device Axis 22 monitor device D850 D1010 Axis 22 monitor device Axis 23 monitor device D859 D1020 Axis 23 monitor device Axis 23 monitor device D860 D1029 Axis 23 monitor device Axis 24 monitor device D869 D1030 Axis 24 monitor device Axis 24 monitor device D879 D1040 Axis 25 monitor device D1049 D880 Axis 9 monitor device D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D890 D1050 Axis 27 monitor device D1060 Axis 12 monitor device D1070 to Axis 12 monitor devi		Axis 2 monitor device	to	Axis 18 monitor device
to Axis 3 monitor device to Axis 19 monitor device D829 D830 D990 Axis 20 monitor device D839 D999 Axis 20 monitor device D839 D1000 Axis 20 monitor device D840 D1000 Axis 21 monitor device D849 D1009 Axis 21 monitor device D849 D1009 Axis 22 monitor device D849 D1010 Axis 22 monitor device D850 D1010 Axis 22 monitor device D859 D1020 Axis 23 monitor device D860 D1029 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 Axis 8 monitor device To Axis 24 monitor device D879 D1030 Axis 24 monitor device To Axis 25 monitor device D880 D1040 Axis 25 monitor device D1049 Axis 26 monitor device D890 D1050 Axis 26 monitor device D1059 Axis 27 monitor device D900 Axis 11 monitor device To A	D819		D979	
D829 D989 D830 Axis 4 monitor device to Axis 20 monitor device D839 D999 D1000 Axis 21 monitor device D840 D1000 Axis 21 monitor device D1009 D849 D1009 Axis 21 monitor device D1009 D850 D1010 Axis 22 monitor device Axis 22 monitor device D859 D1019 Axis 22 monitor device D1019 D860 Axis 7 monitor device to Axis 23 monitor device D869 D1029 Axis 23 monitor device D1029 D870 D1030 to Axis 24 monitor device D879 D1030 Axis 24 monitor device D1039 D880 D1040 Axis 25 monitor device D1049 D889 D1050 Axis 25 monitor device D1059 D890 D1050 Axis 26 monitor device D1059 D900 Axis 11 monitor device to Axis 27 monitor device D909 D1060 Axis 28 monitor device D1070 To	D820		D980	
D830 Axis 4 monitor device D990 Axis 20 monitor device D839 D840 D1000 Axis 21 monitor device D849 D1000 Axis 21 monitor device D849 D1009 Axis 21 monitor device D849 D1009 Axis 22 monitor device D850 D1010 Axis 22 monitor device D859 D1019 Axis 22 monitor device D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1030 Axis 24 monitor device D879 D1040 Axis 24 monitor device D880 D1040 Axis 25 monitor device D889 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device D900 Axis 11 monitor device D1060 D000 Axis 12 monitor device D1070 D000 Axis 12 monitor device Axis 28 monitor device D910 Axis 13 monitor device Axis 29 moni	to	Axis 3 monitor device	to	Axis 19 monitor device
to Axis 4 monitor device to Axis 20 monitor device D839 D1000 D1000 Axis 21 monitor device D840 D1000 Axis 21 monitor device D1009 D849 D1009 Axis 21 monitor device D1009 D850 D1010 Axis 22 monitor device D1019 D850 D1019 Axis 22 monitor device D1019 D860 D1029 Axis 23 monitor device D1029 D860 D1029 Axis 23 monitor device D1030 D870 D1030 Axis 24 monitor device D1039 D870 D1039 Axis 24 monitor device D1040 D879 D1040 Axis 25 monitor device D1049 D880 D1049 Axis 25 monitor device D1059 D890 Axis 10 monitor device D1050 Axis 26 monitor device D899 D1060 D1060 Axis 27 monitor device D909 D1069 D1070 Axis 28 monitor device D919 D1079 Axis 29 monitor device <tr< td=""><td>D829</td><td></td><td>D989</td><td></td></tr<>	D829		D989	
to Axis 4 monitor device to Axis 20 monitor device D839 D1000 D1000 Axis 21 monitor device D840 D1000 Axis 21 monitor device D1009 D849 D1009 Axis 21 monitor device D1009 D850 D1010 Axis 22 monitor device D1019 D850 D1019 Axis 22 monitor device D1019 D860 D1029 Axis 23 monitor device D1029 D860 D1029 Axis 23 monitor device D1030 D870 D1030 Axis 24 monitor device D1039 D870 D1039 Axis 24 monitor device D1040 D879 D1040 Axis 25 monitor device D1049 D880 D1049 Axis 25 monitor device D1059 D890 Axis 10 monitor device D1050 Axis 26 monitor device D899 D1060 D1060 Axis 27 monitor device D909 D1069 D1070 Axis 28 monitor device D919 D1079 Axis 29 monitor device <tr< td=""><td>D830</td><td></td><td>D990</td><td></td></tr<>	D830		D990	
D839 D999 D840 Axis 5 monitor device to Axis 21 monitor device D849 D1009 Axis 21 monitor device D850 D1010 Axis 22 monitor device D859 D1019 Axis 22 monitor device D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D879 D1040 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device D899 D1060 Axis 26 monitor device D1069 D1060 Axis 27 monitor device D909 D1060 Axis 27 monitor device D1070 Axis 28 monitor device D1079 D1070 D1080 Axis 13 monitor device D1080 D0 Axis 14 monitor device D1090 D1099 <td></td> <td>Axis 4 monitor device</td> <td>to</td> <td>Axis 20 monitor device</td>		Axis 4 monitor device	to	Axis 20 monitor device
D840 Axis 5 monitor device D1000 Axis 21 monitor device D849 D1009 Axis 21 monitor device D850 D1010 Axis 22 monitor device D859 D1019 Axis 22 monitor device D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1030 Axis 24 monitor device D879 D1039 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D899 D1050 Axis 26 monitor device D899 D1050 Axis 26 monitor device D900 D1060 Axis 27 monitor device D1069 D1070 Axis 27 monitor device D910 D1070 Axis 28 monitor device D1079 D1080 Axis 29 monitor device D1089 D1090 Axis 30 monitor device				
to Axis 5 monitor device to Axis 21 monitor device D849 D1009 Axis 21 monitor device D850 D1010 Axis 22 monitor device D859 D1019 Axis 22 monitor device D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1030 Axis 24 monitor device D879 D1039 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D890 D1050 Axis 26 monitor device D990 D1060 Axis 27 monitor device D1069 D1069 Axis 27 monitor device D910 D1070 Axis 28 monitor device D910 D1079 Axis 28 monitor device D1079 D1080 Axis 29 monitor device D1089 D1090 Axis 30 monitor device			D1000	
D850 Axis 6 monitor device D1010 Axis 22 monitor device D859 D1019 Axis 22 monitor device D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D879 D1040 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D890 D1050 Axis 26 monitor device D899 D1060 Axis 27 monitor device D900 D1060 Axis 27 monitor device D910 D1070 Axis 28 monitor device D910 D1070 Axis 28 monitor device D910 D1079 Axis 29 monitor device D920 D1080 Axis 29 monitor device D920 D1089 D1090 To Axis 14 monitor device To Axis 30 monitor device	to	Axis 5 monitor device	to	Axis 21 monitor device
to Axis 6 monitor device to Axis 22 monitor device D859 D1019 D1020 D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D879 D1040 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D890 D1050 Axis 26 monitor device D899 D1060 Axis 27 monitor device D900 D1060 Axis 27 monitor device D909 D1070 Axis 28 monitor device D910 D1070 Axis 28 monitor device D919 D1079 Axis 29 monitor device D1080 Axis 29 monitor device D920 D1089 Axis 30 monitor device D930 Axis 14 monitor device To Axis 30 monitor device	D849		D1009	
to Axis 6 monitor device to Axis 22 monitor device D859 D1019 D1020 D860 D1020 Axis 23 monitor device D869 D1029 Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D879 D1040 Axis 25 monitor device D880 D1040 Axis 25 monitor device D889 D1050 Axis 26 monitor device D890 D1050 Axis 26 monitor device D899 D1060 Axis 27 monitor device D900 D1060 Axis 27 monitor device D909 D1070 Axis 28 monitor device D910 D1070 Axis 28 monitor device D919 D1079 Axis 29 monitor device D1080 Axis 29 monitor device D920 D1089 Axis 30 monitor device D930 Axis 14 monitor device To Axis 30 monitor device				
D859 D1019 D860 D1020 to Axis 23 monitor device D870 D1029 D870 D1030 to Axis 8 monitor device D879 D1030 D880 D1040 to Axis 9 monitor device D889 D1049 D890 D1050 to Axis 10 monitor device D899 D1050 to Axis 11 monitor device D900 Axis 11 monitor device D1060 Axis 27 monitor device D1069 D1069 D910 Axis 12 monitor device to Axis 12 monitor device D1079 D1070 to Axis 13 monitor device D1080 Axis 29 monitor device D1089 D1090 to Axis 14 monitor device to D1099 Axis 30 monitor device		Axis 6 monitor device		Axis 22 monitor device
D860 Axis 7 monitor device D1020 b0869 Axis 7 monitor device to Axis 23 monitor device D870 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D880 D1040 Axis 25 monitor device D889 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device D899 D1050 Axis 26 monitor device D900 D1060 Axis 27 monitor device D909 D1069 Axis 27 monitor device D910 D1070 Axis 28 monitor device D910 D1070 Axis 28 monitor device D910 D1080 Axis 29 monitor device D920 D1080 Axis 29 monitor device D929 D1089 D1090 D930 Axis 14 monitor device to Axis 30 monitor device				
to Axis 7 monitor device to Axis 23 monitor device D870 D1030 D1030 Axis 24 monitor device D879 D1039 Axis 24 monitor device D1039 D880 D1040 Axis 25 monitor device Axis 25 monitor device D889 D1049 Axis 25 monitor device Axis 26 monitor device D890 D1050 Axis 26 monitor device Axis 26 monitor device D899 D1060 Axis 27 monitor device D900 D1060 Axis 27 monitor device D909 D1070 Axis 28 monitor device D910 D1079 D1079 D920 D1080 Axis 29 monitor device D929 D1089 D1089 D930 Axis 14 monitor device to Axis 30 monitor device D939 Axis 14 monitor device to Axis 30 monitor device				
D869 D1029 D870 D1030 to Axis 8 monitor device D879 D1039 D880 D1040 to Axis 9 monitor device D889 D1049 D890 D1050 to Axis 10 monitor device to D899 D1059 D900 Axis 11 monitor device to D900 Axis 11 monitor device to D909 D1069 D910 D1070 to Axis 12 monitor device D910 Axis 12 monitor device D1079 D1080 to Axis 28 monitor device D920 D1080 to Axis 29 monitor device D929 D1089 D930 Axis 14 monitor device to D1099 Axis 30 monitor device		Axis 7 monitor device		Axis 23 monitor device
D870 to Axis 8 monitor device Axis 24 monitor device D879 D1039 Axis 24 monitor device D880 D1040 Axis 25 monitor device D889 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device D899 D1059 Axis 26 monitor device D900 D1060 Axis 27 monitor device D909 D1060 Axis 27 monitor device D910 D1070 Axis 28 monitor device D910 D1079 D1080 to Axis 13 monitor device to Axis 29 monitor device D920 D1089 D1089 D930 Axis 14 monitor device to Axis 30 monitor device D939 Axis 14 monitor device to Axis 30 monitor device				
to Axis 8 monitor device to Axis 24 monitor device D879 D1039 D1039 D880 D1040 Axis 25 monitor device D889 D1049 Axis 25 monitor device D890 D1050 Axis 26 monitor device D899 D1059 Axis 26 monitor device D900 D1059 D1060 to Axis 11 monitor device to Axis 27 monitor device D909 D1069 D1070 Axis 28 monitor device D910 D1079 D1079 D1080 to Axis 13 monitor device to Axis 29 monitor device D920 D1089 D1089 D930 Axis 14 monitor device to Axis 30 monitor device				
D879 D1039 D880 D1040 to Axis 9 monitor device D889 D1049 D890 D1050 to Axis 10 monitor device to Axis 26 monitor device D899 D1059 D1059 D900 D1060 Axis 27 monitor device D909 D1069 D1069 D910 D1070 Axis 28 monitor device D910 D1079 D1079 D920 D1080 Axis 29 monitor device D929 D1089 D1090 D930 Axis 14 monitor device to Axis 30 monitor device D939 D1099 Axis 30 monitor device		Axis 8 monitor device		Axis 24 monitor device
D880 Axis 9 monitor device D1040 D889 D1049 D890 D1050 to Axis 10 monitor device to Axis 26 monitor device D899 D1059 D1059 D900 D1060 Axis 27 monitor device D909 D1069 Axis 27 monitor device D910 D1070 Axis 28 monitor device D919 D1079 Axis 28 monitor device D910 D1080 Axis 29 monitor device D920 D1080 Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099 Axis 30 monitor device				
to Axis 9 monitor device to Axis 25 monitor device D890 D1050 D1050 to Axis 10 monitor device to Axis 26 monitor device D899 D1059 D1059 D900 D1060 Axis 27 monitor device D909 D1069 D1069 D910 D1070 Axis 28 monitor device D919 D1079 Axis 28 monitor device D920 D1080 Axis 29 monitor device D929 D1089 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099 Axis 30 monitor device				
D889 D1049 D890 D1050 to Axis 10 monitor device to Axis 26 monitor device D899 D1059 D900 D1060 to Axis 11 monitor device to Axis 27 monitor device D909 D1069 D910 D1070 Axis 28 monitor device D919 D1079 D920 D1080 to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099		Axis 9 monitor device		Axis 25 monitor device
D890 to Axis 10 monitor device to Axis 26 monitor device D899 D1059 D1059 D900 D1060 to Axis 27 monitor device D909 D1069 D1069 D910 D1070 to Axis 28 monitor device D919 D1079 D1079 D920 D1080 to Axis 13 monitor device D929 D1089 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099 Axis 30 monitor device		7 5.10 6 1116111161 4611166		7 240 20 1110111101 001100
to			D1050	
D899 D1059 D900 D1060 to Axis 11 monitor device to Axis 27 monitor device D909 D1069 D1070 to Axis 12 monitor device to Axis 28 monitor device D919 D1079 D1079 D920 D1080 Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099		Axis 10 monitor device		Axis 26 monitor device
to	D899		D1059	
D909 D1069 D910 D1070 to Axis 12 monitor device to Axis 28 monitor device D919 D1079 D920 D1080 to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099	D900		D1060	
D910 to Axis 12 monitor device to Axis 28 monitor device D919 D1079 D920 D1080 to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099	to	Axis 11 monitor device	to	Axis 27 monitor device
to	D909		D1069	
D919 D1079 D920 D1080 to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099	D910		D1070	
D919 D1079 D920 D1080 to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099	to	Axis 12 monitor device	to	Axis 28 monitor device
to Axis 13 monitor device to Axis 29 monitor device D929 D1089 D930 D1090 to Axis 14 monitor device D939 D1099 Axis 30 monitor device D1099	D919		D1079	
D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099	D920		D1080	
D929 D1089 D930 D1090 to Axis 14 monitor device to Axis 30 monitor device D939 D1099		Axis 13 monitor device		Axis 29 monitor device
D930 to Axis 14 monitor device to Axis 30 monitor device D939 D1099			D1089	
to Axis 14 monitor device to Axis 30 monitor device D939 D1099				
D939 D1099		Axis 14 monitor device		Axis 30 monitor device
			D1099	
D940 D1100	D940		D1100	
to Axis 15 monitor device to Axis 31 monitor device	to	Axis 15 monitor device	to	Axis 31 monitor device
D949 D1109	D949		D1109	
D950 D1110	D950		D1110	
to Axis 16 monitor device to Axis 32 monitor device		Axis 16 monitor device		Axis 32 monitor device
D959 D1119			D1119	

Detailes of each axis

Device No.	Signal name
D800 + 10n D801 + 10n	Feed current value
D802 + 10n	Minor error code
D803 + 10n	Major error code
D804 + 10n	Execute program No.
D805 + 10n	M-code
D806 + 10n	Current value after virtual sevomotor axis main
D807 + 10n	shaft's differential gear
D808 + 10n	Error search output axis No.
D809 + 10n	Data set pointer for constant-speed control

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N) : Axis No.1 to No.32 (n=0 to 31) Q172CPU(N) : Axis No.1 to No.8 (n=0 to 7)

(Note-2): The unused axis areas in the mechanical system program can be used as an user device.

4) Table of the synchronous encoder axis monitor devices (SV22 only)

Device No.	Signal name
D1120	
to	Axis 1 monitor device
D1129	
D1130	
to	Axis 2 monitor device
D1139	
D1140	
to	Axis 3 monitor device
D1149	
D1150	
to	Axis 4 monitor device
D1159	
D1160	
to	Axis 5 monitor device
D1169	
D1170	
to	Axis 6 monitor device
D1179	
D1180	
to	Axis 7 monitor device
D1189	
D1190	
to	Axis 8 monitor device
D1199	
D1200	
to	Axis 9 monitor device
D1209	
D1210	
to	Axis 10 monitor device
D1219	
D1220	
to	Axis 11 monitor device
D1229	
D1230	
to	Axis 12 monitor device
D1239	

• Detailes of each axis

Device No.	Signal name	
D1120 + 10n	Current value	
D1121 + 10n D1122 + 10n	Minor error code	
D1123 + 10n	Major error code	
D1124 + 10n	Unusable	
D1125 + 10n	Unusable	
D1126 + 10n	Current value after synchronous encoder axis	
D1127 + 10n	main shaft's differential gear	
D1128 + 10n	Error search output axis No.	
D1129 + 10n	Unusable	

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N) : Axis No.1 to No.12 (n=0 to 11) Q172CPU(N) : Axis No.1 to No.8 (n=0 to 7)

(Note-2): Device area of 9 axes or more is unusable in the Q172CPU(N).

5) Table of the cam axis monitor devices (SV22 only)

Device No.	Signal name	Device No.	Signal name
D1240		D1400	
to	Axis 1 monitor device	to	Axis 17 monitor device
D1249		D1409	
D1250		D1410	
to	Axis 2 monitor device	to	Axis 18 monitor device
D1259		D1419	
D1260		D1420	
to	Axis 3 monitor device	to	Axis 19 monitor device
D1269		D1429	
D1270		D1430	
to	Axis 4 monitor device	to	Axis 20 monitor device
D1279		D1439	
D1280		D1440	
to	Axis 5 monitor device	to	Axis 21 monitor device
D1289		D1449	
D1290		D1450	
to	Axis 6 monitor device	to	Axis 22 monitor device
D1299		D1459	
D1300		D1460	
to	Axis 7 monitor device	to	Axis 23 monitor device
D1309		D1469	
D1310		D1470	
to	Axis 8 monitor device	to	Axis 24 monitor device
D1319	7 UNIO O MIONILON GOVIGO	D1479	7 Uto 2 i monitor dovido
D1320		D1480	
to	Axis 9 monitor device	to	Axis 25 monitor device
D1329	7 to 6 monitor device	D1489	7 Alo 20 Monitor device
D1330		D1490	
to	Axis 10 monitor device	to	Axis 26 monitor device
D1339	, but to monitor device	D1499	7 Uto 20 Monitor dovido
D1340		D1500	
to	Axis 11 monitor device	to	Axis 27 monitor device
D1349	7 Mio 11 monitor device	D1509	7 Mio 27 monitor devide
D1350		D1510	
to	Axis 12 monitor device	to	Axis 28 monitor device
D1359	AND 12 MONITOR GEVICE	D1519	AXIS 20 MONITOR GEVICE
D1360		D1519	
to	Axis 13 monitor device	to	Axis 29 monitor device
D1369	, wild to monitor device	D1529	, MO 20 MONITOR GOVIDE
D1370		D1530	
to	Axis 14 monitor device	to	Axis 30 monitor device
D1379	, wild 14 monitor device	D1539	, Alo do monitor devide
D1380		D1540	
to	Axis 15 monitor device	to	Axis 31 monitor device
D1389	AND TO MOUNTO GEVICE	D1549	AND DE MONITOR GEVICE
D1309		D1549	
to	Axis 16 monitor device	to	Axis 32 monitor device
D1399	ANIS TO MOUNTO DEVICE	D1559	AND DE MONITOR DEVICE
שפטו ט		ם וטטש	

Detailes of each axis

Device No.	Signal name
D1240 + 10n	Unusable
D1241 + 10n	Execute cam No.
D1242 + 10n	Execute stroke amount
D1243 + 10n	Execute stroke amount
D1244 + 10n	Current value within 1 cam shaft revolution
D1245 + 10n	Current value within 1 cam shart revolution
D1246 + 10n	
D1247 + 10n	Universida
D1248 + 10n	Unusable
D1249 + 10n	

(Note-1): "n" in the above device No. shows the numerical value which correspond to axis No.

Q173CPU(N) : Axis No.1 to No.32 (n=0 to 31) Q172CPU(N) : Axis No.1 to No.8 (n=0 to 7)

(Note-2): The unused aixs areas in the mechanical system program can be used as an user device.

6) Table of the common devices (SV13/SV22)

Device No.	Signal name	Signal derecrtion	Device No.		Signal name	Signal derecrtion
D704	PLC ready flag request		D740	Axis 21		
D705	Speed switching point specified flag request		D741	Axis 22		
D706	All axes servo ON command request	Command	D742	Axis 23		
D707	Real mode/virtual mode switching request (SV22)	device	D743	Axis 24		
D708	JOG operation simultaneous start command request		D744	Axis 25	Manual pulse generators 1	
D709	Unusable	_	D745	Axis 26	pulse input magnification	
D710	IOO an austica simultanasus start		D746	Axis 27	setting register (Note-1, 2)	
to	JOG operation simultaneous start axis setting register		D747	Axis 28		
D713	axis setting register		D748	Axis 29		
D744	Manual autor are are to de Alla		D749	Axis 30		Command
D714 D715	Manual pulse generator axis 1 No. setting register		D750	Axis 32		device
טו זט	Setting register		D751	Axis 32		
D716 D717	Manual pulse generator axis 2 No.		D752	· ·	pulse generator 1 smoothing action setting register	
	setting register	D753 Manual pulse generator 2 smoothing magnification setting register				
D718 D719	Manual pulse generator axis 3 No. setting register		D754		pulse generator 3 smoothing action setting register	
D720	Axis 1		D755	_	pulse generator 1 enable flag request	
D721	Axis 2		D756		pulse generator 2 enable flag request	
D722	Axis 3		D757		pulse generator 3 enable flag request	
D723	Axis 4	Command	D758	Unusabl		_
D724	Axis 5	device			eady complete flag status	Monitor
D725	Axis 6		D759		7/1 : ON)	device
D726	Axis 7		D760			
D727	Axis 8		to	Unusabl	е	
D728	Axis 9 Manual pulse generators 1		D789			
D729	Axis 10 pulse input magnification		D790	Bool mo	ido avia information register (SV22)	
D730	Axis 11 setting register (Note-1, 2)		D791	Real IIIC	de axis information register (SV22)	Monitor
D731	Axis 12		D792			device
D732	Axis 13		to	Servo ar	mplifier type	457100
D733	Axis 14		D799			
D734	Axis 15					
D735	Axis 16					
D736	Axis 17					
D737	Axis 18					
D738	Axis 19					
D739	Axis 20					

(Note-1): The range of axis No.1 to 8 is valid in the Q172CPU(N).

(Note-2) : Device area of 9 axes or more is unusable in the Q172CPU(N).

(2) Special relays

Special relays are internal relays whose applications are fixed in the Motion CPU. For this reason, they cannot be used in the same way as the normal internal relays by the Motion SFC programs.

However, they can be turned ON/OFF as needed in order to control the Motion CPU.

The headings in the table that follows have the following meanings.

Item	Explanation				
No.	Indicates the device No. of the special relay.				
Name	Indicates the name of the special relay.				
Meaning	Indicates the nature of the special relay.				
Details	Indicates detailed information about the nature of the special relay.				
Set by (When set)	Indicates whether the relay is set by the system or user, and, if it is set by system, when setting is performed. Set by> S: Set by system (Motion CPU) U: Set by user (Motion SFC program or test operation using a peripheral device) S/U: Set by both system (Motion CPU) and user When set> Indicated only if setting is done by system (Motion CPU). Main process: Set during each main processing (free time processing of the CPU) Initial process: Set only during initial processing (when power supply is turned ON, or when executed the reset) Status change: Set only when there is a change in status Error: Set when error is occurred. Request: Set only when there is a user request (Special reray, etc.)				
	Operation cycle: Set during each operation cycle of the Motion CPU.				

Special relay list

No.	Name	Meaning	Details	Set by (When set)	Remark
M9000	Fuse blown detection flag	OFF : Normal ON : Fuse blown module detected	Turn on when there is one or more output modules control of self CPU which fuse has been blown. Remains on if normal status is restored.		
M9005	AC/DC DOWN detection flag	OFF : AC/DC DOWN not detected ON : AC/DC DOWN detected	Turn on if a momentary power interruption of less than 20ms occurred during use of the AC power supply module, and reset by turning power off to on. Turn on if a momentary power interruption of less than 10ms occurred during use of the DC power supply module, and reset by turning power off to on.		
M9006	Battery low flag	OFF : Normal ON : Battery low	Turned on when the voltage of the external battery reduces to less than specified value. Turn off when the voltage of the external battery becomes normal. Synchronizes with "BAT. LED" Check the voltage of the external battery, only when it is set with "external battery use" by system setting.	S(Occur an error)	
M9007	Battery low latch flag	OFF : Normal ON : Battery low	Turn on when the voltage of the external battery reduces to less than specified value. Remains on if normal status is restored. Synchronizes with "BAT. LED" Check the voltage of the external battery, only when it is set with "external battery use" by system setting.		
M9008	Self-diagnostic error flag	OFF : No error ON : Error OFF : No error	Turn on when error is found as a result of self-diagnosis. Remains on if normal status is restored. Turn on when error is found as a result of diagnosis.		New
M9010	Diagnostic error flag	ON : Error	Remains on if normal status is restored.		(Note-1)
M9025	Clock data set request	OFF : Ignored ON : Set request present used	Write clock data stored in D9025 to D9028 to the clock element when M9025 has changed from off to on.	U	
M9026	Clock data error	OFF : No error ON : Error	• Turn on by clock data (D9025 to D9028) error.	S(Request)	
M9028	Clock data read request	OFF : Ignored ON : Read request	Read clock data from D9025 to D9028 in BCD when M9028 is on.	U	
M9036	Always ON	ON ——— OFF	Turn on without regard to position of RUN/STOP switch on.	S(Main processing)	
M9037	Always OFF	ON OFF ———	Turn off without regard to position of RUN/STOP switch on.	S(Main processing)	
M9060	Diagnostic error reset	OFF → ON : Diagnostic error reset	A reset of the diagnostic error is executed.	U	New (Note-1)
M9073	PCPU WDT error flag	ON : Abnormal OFF : Normal	Turn on when a "watchdog timer error" is detected by the Motion CPU self-diagnosis function. When the Motion CPU detects a WDT error, it executes an immediate stop without deceleration of the operating axes. The error cause is stored in the "Motion CPU WDT error cause (D9184)".	S(Occur an error)	
M9074	PCPU READY complete flag	ON : PCPU READY completion OFF : PCPU READY uncompletion	When the PLC ready flag (M2000) turn off to on, the fixed parameters, servo parameters and limit switch output data, etc., are checked, and if no error is detected this flag turns on. Turn off when the PLC ready (M2000) signal turns off.	S(Request)	
M9075	Test mode ON flag	ON : TEST mode is in effect. OFF : TEST mode is not in effect.	This flag status indicates whether a TEST mode established from a peripheral device is currently in effect. If the TEST mode is not established in response to a TEST mode request from a peripheral device, the "TEST mode request error flag (M9078)" will turn on.	S(Request)	
M9076	External forced stop input flag	ON : Forced stop OFF OFF : Forced stop ON	This flag status indicate whether the forced stop.	S(Operation cycle)	

(Note-1): It adds newly at the Motion controller Q series.

Special relay list (continued)

No.	Name	Meaning	Details	Set by (When set)	Remark
M9077	Manual pulse generator axis setting error flag	ON: At least one D714 to D719 setting is abnormal. OFF: All D714 to D719 settings are normal.	 This flag indicates whether the setting designated at the manual pulse generator axis setting register (D714 to D719) is normal or abnormal. When this relay turn on, the error content is stored at the manual pulse generator axis setting error register (D9185 to D9187). 	S(Occur an error)	
M9078	TEST mode request error flag	ON : Abnormal OFF : Normal	 Turn on if the TEST mode is not established in response to a TEST mode request from a peripheral device. When this relay turns on, the error content is stored at the TEST mode request error register (D9182 to D9183). 	S(Occur an error)	
M9079	Servo program setting error flag	ON : Abnormal OFF : Normal	 This flag status indicates whether the positioning data of the servo program(K) specified with the Motion SFC program is normal or abnormal, and if error is detected this flag turns on. The content of a servo program setting error is stored at D9189 and D9190. 	S(Occur an error)	
M9104	Servo parameter read request flag	OFF to ON : Servo parameter read	 The servo parameter of servo parameter read request axis set as D9104 is reflected in the Motion CPU from the servo amplifier at the time of OFF to ON. 	U	
M9105	Servo parameter reading flag	ON: Servo parameter reading. OFF: Except servo parameter reading.	This flag turn on while having read the servo amplifier to the Motion CPU. It turn off automatically after reading completion.	S(Reading)	
M9216	CPU No.1 MULTR complete flag	OFF to ON : CPU No.1 read completion	Turn on when the data read from CPU No.1 is performed normally by MULTR instruction.		
M9217	CPU No.2 MULTR complete flag	OFF to ON : CPU No.2 read completion	Turn on when the data read from CPU No.2 is performed normally by MULTR instruction.		
M9218	CPU No.3 MULTR complete flag	OFF to ON : CPU No.3 read completion	Turn on when the data read from CPU No.3 is performed normally by MULTR instruction.	S(Read completion)	
M9219	CPU No.4 MULTR complete flag	OFF to ON : CPU No.4 read completion	Turn on when the data read from CPU No.4 is performed normally by MULTR instruction.		
M9240	CPU No.1 resetting flag	OFF : CPU No.1 reset release ON : CPU No.1 resetting	Turn off at reset release of the CPU No.1. Turn on during reset of the CPU No.1. (It also contains when a CPU is removed from the base unit.) The other CPU is also resetting.		New (Note-1)
M9241	CPU No.2 resetting flag	OFF : CPU No.2 reset release ON : CPU No.2 resetting	Turn off at reset release of the CPU No.2. Turn on during reset of the CPU No.2. (It also contains when a CPU is removed from the base unit.) The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.		
M9242	CPU No.3 resetting flag	OFF : CPU No.3 reset release ON : CPU No.3 resetting	Turn off at reset release of the CPU No.3. Turn on during reset of the CPU No.3. (It also contains when a CPU is removed from the base unit.) The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.	S(Change status)	
M9243	CPU No.4 resetting flag	OFF: CPU No.4 reset release ON: CPU No.4 resetting	Turn off at reset release of the CPU No.4. Turn on during reset of the CPU No.4. (It also contains when a CPU is removed from the base unit.) The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.		

(Note-1): It adds newly at the Motion controller Q series.

 $(\text{Note-2}): \text{The CPU No.1} \text{ is reset after the factor of the stop error is removed to cancel a stop error.} \rightarrow \text{Resetting is cancelled}.$

Special relay list (continued)

No.	Name	Meaning	Details	Set by (When set)	Remark
M9244		OFF : CPU No.1 normal ON : On CPU No.1 stop error	Turn off when the CPU No.1 is normal. (It contains at continuation error.) Turn on during stop error of the CPU No.1. (Note-2)		
M9245		OFF : CPU No.2 normal ON : On CPU No.2 stop error	Turn off when the CPU No.2 is normal. (It contains at continuation error.) Turn on during stop error of the CPU No.2. (Note-2)	S(Change status)	New (Note-1)
M9246		OFF : CPU No.3 normal ON : On CPU No.3 stop error	Turn off when the CPU No.3 is normal. (It contains at continuation error.) Turn on during stop error of the CPU No.3. (Note-2)	o(onango otatao)	(10.01)
M9247		OFF : CPU No.4 normal ON : On CPU No.4 stop error	Turn off when the CPU No.4 is normal. (It contains at continuation error.) Turn on during stop error of the CPU No.4. (Note-2)		

(Note-1): It adds newly at the Motion controller Q series.

 $(\text{Note-2}): \text{The CPU No.1} \text{ is reset after the factor of the stop error is removed to cancel a stop error.} \rightarrow \text{Resetting is cancelled}.$

(3) Special registers

Special registers are internal registers whose applications are fixed in the Motion CPU. For this reason, it is not possible to use these registers in Motion SFC programs in the same way that normal registers are used. However, data can be written as needed in order to control the Motion CPU. Data stored in the special registers are stored as BIN values if no special designation has been made to the contrary.

The headings in the table that follows have the following meanings.

Item	Explanation
Number	Indicates the No. of the special register.
Name	Indicates the name of the special register.
Meaning	Indicates the nature of the special register.
Details	Indicates detailed information about the nature of the special register.
	Indicates whether the register is set by the system or user, and, if it is set by system, when setting is performed. Set by> S: Set by system (Motion CPU) U: Set by user (Motion SFC program or test operation using a peripheral device) S(U) Set by both system (Motion CPU) and user.
Set by	S/U: Set by both system (Motion CPU) and user When set> Indicated only if setting is done by system (Motion CPU).
(When set)	Main process : Set during each main processing (free time processing of the CPU) Initial process : Set only during initial processing (when power supply is turned ON, or when executed the reset) Status change : Set only when there is a change in status Error : Set when error is occurred. Request : Set only when there is a user request (Special reray, etc.) Operation cycle : Set during each operation cycle of the Motion CPU.

Special register list

No.	Name	Meaning	Details	Set by (When set)	Remark
D9000	Fuse blown No.	Module No. with blown fuse	When fuse blown modules are detected, the lowest I/O module No. is stored in D9000.	(Whom socy	
D9005	AC/DC DOWN counter No.	Number of times for AC/DC DOWN	1 is added to the stored value each time the input voltage becomes 85[%](AC power supply/65[%] DC power supply) or less of the rating while the CPU module is performing an operation, and the value is stored in BIN code.		
D9008	Diagnostic error	Dignostic error number	 When error is found as a result of self-diagnosis, error No. is stored in BIN code. Refer to "19.4 Multiple CPU Error Codes" for details of the error code. 		
D9010		Diagnostic error occurrence (Year, Month)	The age (A.D, the rightmost two digits) when data on D9008 are updated, and the month stored with a BCD code two digits. B15 to B8 B7 to B0 Example: October 1995 Year(0 to 99) Month(1 to 12) H9510		
D9011	Diagnostic error occurrence time	Diagnostic error occurrence time (Day, Hour)	The day when data on D9008 are updated, and the hour stored with a BCD code two digits. B15 to B8 B7 to B0 Example: 25st, 10 a.m Day(1 to 31) Hour(0 to 23) H2510	S(Occur an error)	
D9012	Diagnostic error occurrence time (Minute, Second)		occurrence time B15 to B8B7 to B0 Example : 35 min., 48 sec.		New
D9013	Error information classfication	Error information classfication code		New (Note)	
D9014	Error information	Error information	Error information to comply with the diagnostic error (D9008) is stored. There are following two types informations to be stored. 1) Module No./CPU No./Base No. Module No. or CPU No. is stored according to the error which occurred in the case of the Multiple CPU system. (Refer to each error code which is stored.) CPU No.1:1, CPU No.2:2, CPU No.3:3, CPU No.4:4 2) Parameter No.		
D9015	Operating state of CPU	Operating state of CPU	*The operation states of CPU as shown below are stored in D9015. B15 B12B11 B8 B7 B4 B3 B0 2) 1) 1) Operating state of CPU 0: RUN 2: STOP 2) STOP cause 0: RUN/STOP switch Note: Priority is earliest first 4: Error	S(Main processing)	
D9017	Scan time	Scan time (1ms units)	Main cycle is stored in the unit 1ms. Setting range (0 to 65535[ms])		New
D9019	Maximum scan time	Maximum scan time (1ms units)	The maximum value of the main cycle is stored in the unit 1ms. Setting range (0 to 65535[ms])		(Note)
D9025	Clock data	Clock data (Year, month)	Stores the year (2 lower digits) and month in BCD. B15 to B12B11 to B8 B7 to B4 B3 to B0 Example : July,1993	S/U(Request)	
			Year Month		

(Note): It adds newly at the Motion controller Q series.

Special register list (continued)

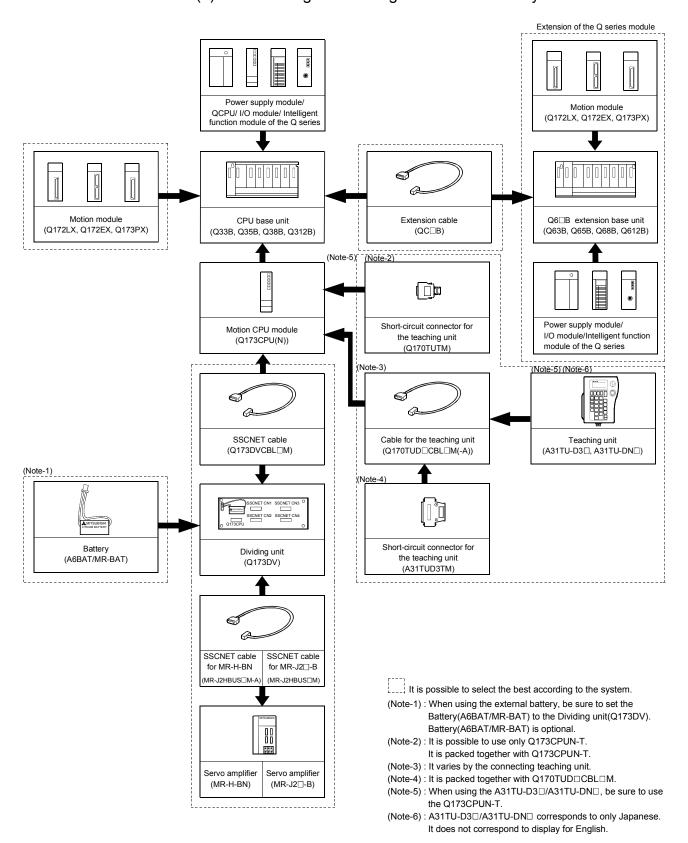
No.	Name	Meaning	Details	Set by (When set)	Remark
D9026	Clock data	Clock data (Day, hour)	Stores the day and hour in BCD. B15 to B12B11 to B8 B7 to B4 B3 to B0 Example : 31st, 10 a.m.		
D9027	Clock data	Clock data (Minute, second)	Stores the minute and second in BCD. B15 to B12B11 to B8 B7 to B4 B3 to B0 Example : 35 min., 48 sec.		
D9028	Clock data	Clock data (Day of week)	*Stores the day of the week in BCD. B15 to B12B11 to B8 B7 to B4 B3 to B0 Example: Friday H0005 Day of week 0 Sunday 1 Monday 2 Tuesday 3 Wednesday 4 Thursday 5 Friday 6 Saturday	S/U(Request)	
D9060	Diagnostic error reset error No.	Error No. of releasing an error	Error No. of canceling error is stored.	U	
D9061	Multiple CPU No.	Multiple CPU No.	CPU No. of the self CPU is stored.	S(Initial processing)	New (Note)
D9104	Servo parameter read request axis No.	Servo parameter read axis No.	 Axis No. of servo amplifier which begins to read servo parameter is setting. Q173CPU(N): 1 to 32 (Axis1 to 32) Q172CPU(N): 1 to 8 (Axis1 to 8) 	U	
	Test mode request error	It is operating in requirement error occurrence of the test mode, axis information	• Each axis is stopping : 0/Operating : 1, information is stored as a bit data. D9182 : b0 to b15(Axis 1 to Axis 16) D9183 : b0 to b15(Axis 17 to Axis 32)		
D9184	Motion CPU WDT error cause		The following error codes are stored in D9184. 1: S/W fault 1 2: Operation cycle over 3: Q bus WDT error 4: WDT error 30: Information processor H/W error 201 to 215: Q bus H/W fault 250 to 253: Servo amplifier interface H/W fault 300: S/W fault3 301: 15 CPSTART instructions of 8 or more points were started simultaneously. 302: During ROM operation, system setting data, program and parameter written to internal FLASH ROM are fault.	S(Occur an error)	
D9185 D9186 D9187	Manual pulse generator axis setting error	Manual pulse generator axis setting error information	Contents of the manual pulse generator axis setting error is stored when the manual pulse generator axis setting error flag(M9077) turn on. (Normal : 0/Setting error : 1) D9185 : The manual pulse generator axis setting error is stored in b0 to b2 (P1 to P3). The smoothing magnification setting is stored in b3 to b5 (P1 to P3). D9186 : One pulse input magnification setting error is stored in b0 to b15 (axis 1 to axis 16). D9187 : One pulse input magnification setting error is stored in b0 to b15 (axis 17 to axis 32).		

(Note): It adds newly at the Motion controller Q series.

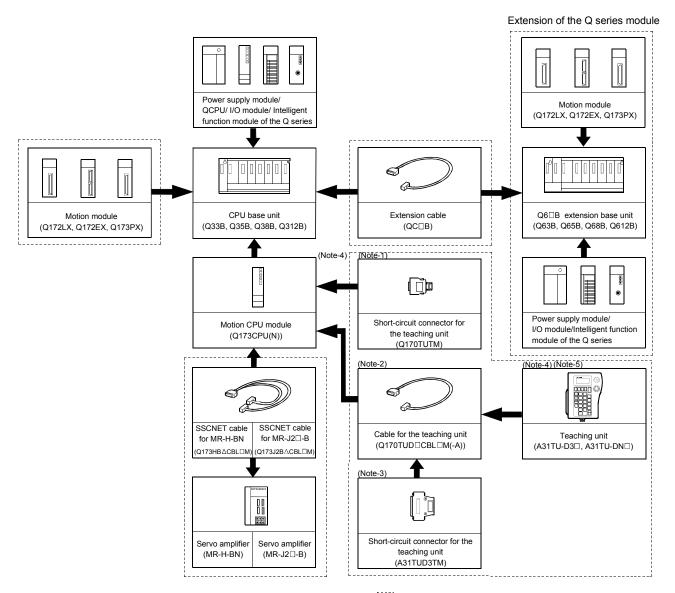
Special register list (continued)

No.	Name	Meaning	Details	Set by (When set)	Remark
D9188	Motion operation cycle	Motion operation cycle	\bullet The time when the motion operation cycle is stored in the [µs] unit.	S(Operation cycle)	New (Note)
D9189	Error program No.	Error program No. of servo program	When the servo program setting error flag (M9079) turns on, the erroneous servo program No. will be stored.	S(Occur an error)	
D9190	Error item information	Error code of servo program	When the servo program setting error flag (M9079) turns on, the error code corresponding to the erroneous setting item will be stored.		
D9191 D9192	Servo amplifier loading information	Servo amplifier loading information	The loading status(loading: 1/non-loading: 0) of the servo amplifier checked in initial process, and stored as the bit data. D9191: b0 to b15(axis 1 to axis 16) D9192: b0 to b15(axis 17 to axis 32) The axis which turned from non-loading to loading status after power-on is handled as loaded. (However, the axis which turned from loading to non-loading status remains as loaded.)	S(Initial processing)	
D9193 D9194 D9195	Real mode/virtual mode switching error information	Real mode/virtual mode Switching error code	When a mode switching error occurs in real-to-virtual or virtual-to-real mode switching, or a mode continuation error occurs in the virtual mode, its error information is stored.		
D9196	PC link communication error codes	PC link communication error codes	The following error code is stored. The following error code is stored. Solution: Receiving timing error Carror: Carror: Received frame error: Solution: Communication response code error: Solution: Received frame error: Solution: Carror: Cach error code is reset to "00" when normal communication is restarted.)	S(Occur an error)	
D9197	Operation cycle of the Motion CPU setting	Operation cycle of the Motion CPU setting	• The time when the setting operation cycle is stroed in the [μ s] unit.	S(Initial processing)	
D9200	State of switch	State of CPU switch	*The CPU switch status is stored in the following format. B15 B12B11 B8 B7 B4 B3 B0 3) No used. 2) 1) 1) CPU switch status 0: RUN 1: STOP 2: L.CLR 2) Memory card switch Always OFF 3) Dip switch B8 through B12 correspond to SW1 through SW5 of system setting switch 1. 0: OFF/1: ON B13 through B15 is not used.	S(Main processing)	New (Note)
D9201	State of LED	State of CPU-LED	Information concerning which of the following states the LEDs on the CPU are in is stored in the following bit patterns. In order in is stored in the following bit patterns. In order in is stored in the following bit patterns. In order in is stored in the following states the LEDs on the CPU are in is stored in the CPU are in its stored in its stored in the CPU are in its stored in its stored in the CPU are in its stored in the CPU are in its s	S(Change status)	New (Note)

(Note): It adds newly at the Motion controller Q series.


1.3 Hardware Configuration

This section describes the Q173CPU(N)/Q172CPU(N) system configuration, precautions on use of system and configured equipments.


1.3.1 Motion system configuration

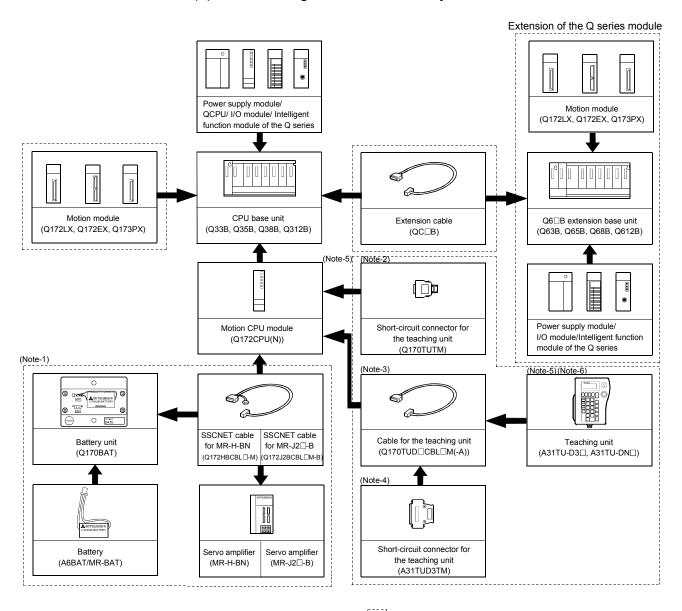
This section describes the equipment configuration, configuration with peripheral devices and system configuration in the Q173CPU(N)/Q172CPU(N) system.

(1) Equipment configuration in Q173CPU(N) system(a) When using the Dividing unit/external battery

(b) When using the Dividing cable

It is possible to select the best according to the system.

(Note-1): It is possible to use only Q173CPUN-T. It is packed together with Q173CPUN-T.


(Note-2): It varies by the connecting teaching unit.

(Note-3) : It is packed together with Q170TUD \square CBL \square M.

(Note-4): When using the A31TU-D3□/A31TU-DN□, be sure to use the Q173CPUN-T.

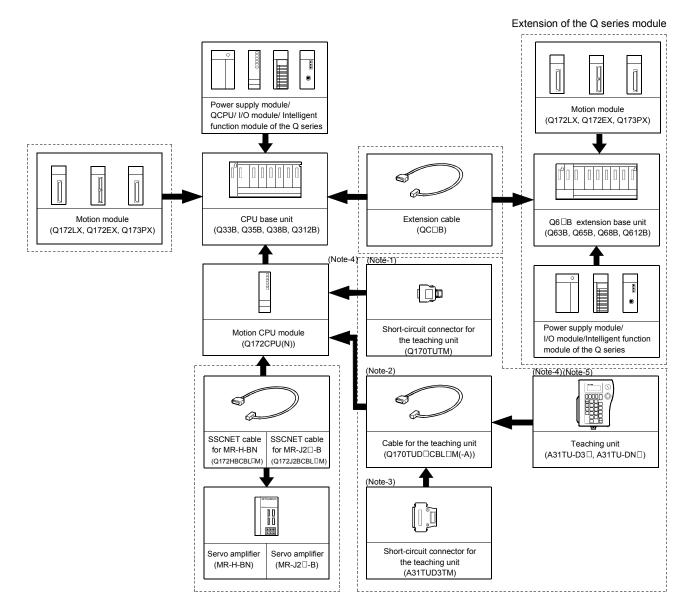
(Note-5): A31TU-D3□/A31TU-DN□ corresponds to only Japanese. It does not correspond to display for English.

(2) Equipment configuration in Q172CPU(N) system(a) When using the external battery

It is possible to select the best according to the system.

(Note-1): When using the external battery, be sure to use the SSCNET cable(Q172J2BCBL□M-B/Q172HBCBL□M-B) and to set the battery (A6BAT/MR-BAT). Also install the battery(A6BAT/MR-BAT) in the Battery unit(Q170BAT). Battery(A6BAT/MR-BAT) is optional.

(Note-2): It is possible to use only Q172CPUN-T.
It is packed together with Q172CPUN-T.


(Note-3): It varies by the connecting teaching unit.

(Note-4) : It is packed together with Q170TUD□CBL□M.

(Note-5): When using the A31TU-D3□/A31TU-DN□, be sure to use the Q172CPUN-T.

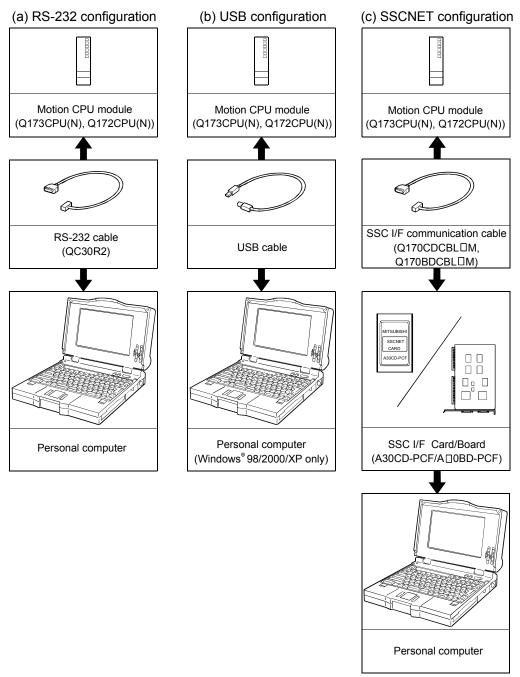
(Note-6): A31TU-D3□/A31TU-DN□ corresponds to only Japanese. It does not correspond to display for English.

(b) When not using the external battery

It is possible to select the best according to the system.

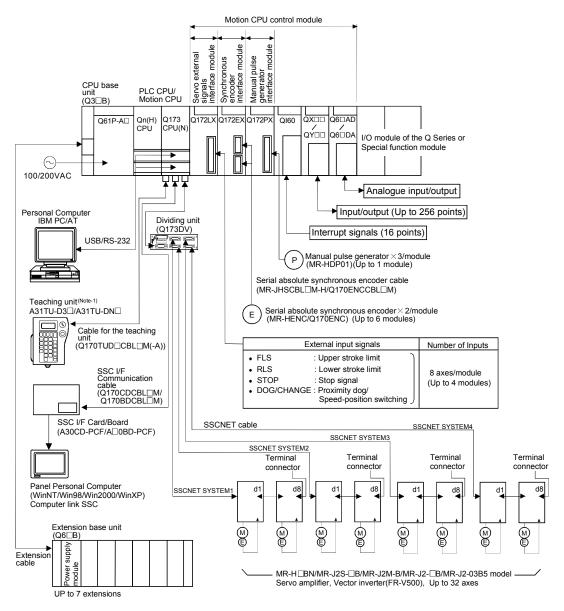
(Note-1): It is possible to use only Q172CPUN-T. It is packed together with Q172CPUN-T.

(Note-2): It varies by the connecting teaching unit.


(Note-3) : It is packed together with Q170TUD□CBL□M.

(Note-4) : When using the A31TU-D3 \square /A31TU-DN \square , be sure to use the Q172CPUN-T.

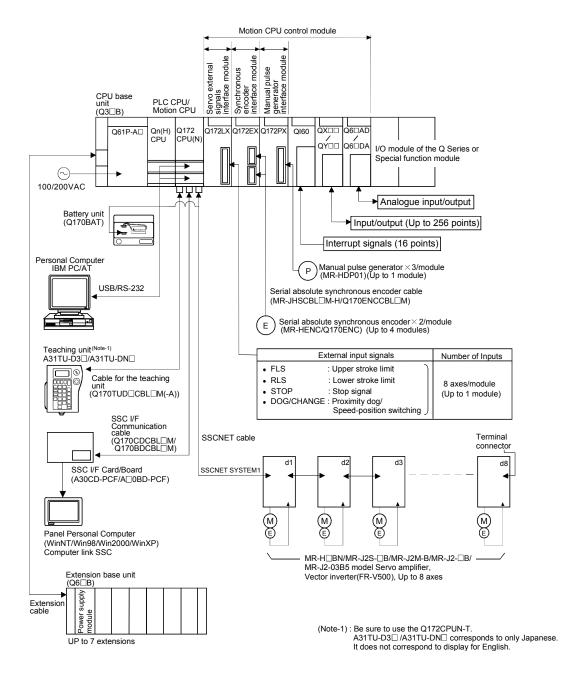
(Note-5) : A31TU-D3□/A31TU-DN□ corresponds to only Japanese. It does not correspond to display for English.


(3) Peripheral device configuration for the Q173CPU(N)/Q172CPU(N)

The following (a)(b)(c) can be used.

(Note): For information about GPP functions of PLC CPU, refer to the operating manual of PLC. Also, refer to the help of each software for information about operation of each programming software package.

1.3.2 Q173CPU(N) System overall configuration



(Note-1): Be sure to use the Q173CPUN-T.
A31TU-D3□/A31TU-DN□ corresponds to only Japanese.
It does not correspond to display for English.

!CAUTION

- Construct a safety circuit externally of the Motion controller or servo amplifier if the abnormal operation of the Motion controller or servo amplifier differ from the safety directive operation in the system.
- The ratings and characteristics of the parts (other than Motion controller, servo amplifier and servomotor) used in a system must be compatible with the Motion controller, servo amplifier and servomotor.
- Set the parameter values to those that are compatible with the Motion controller, servo amplifier, servomotor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
- When a teaching unit is used, the cable for the teaching unit is necessary between the Motion CPU (Q173CPUN-T/Q172CPUN-T) and teaching unit. And, connect the short-circuit connector for teaching unit, after removing the teaching unit or when not using it.

1.3.3 Q172CPU(N) System overall configuration

!CAUTION

- Construct a safety circuit externally of the Motion controller or servo amplifier if the abnormal operation of the Motion controller or servo amplifier differ from the safety directive operation in the system.
- The ratings and characteristics of the parts (other than Motion controller, servo amplifier and servomotor) used in a system must be compatible with the Motion controller, servo amplifier and servomotor.
- Set the parameter values to those that are compatible with the Motion controller, servo amplifier, servomotor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
- When a teaching unit is used, the cable for the teaching unit is necessary between the Motion CPU (Q173CPUN-T/Q172CPUN-T) and teaching unit. And, connect the short-circuit connector for teaching unit, after removing the teaching unit or when not using it.

1.3.4 Software packages

(1) Software packages

(a) Operating system software packages

Application	Software package				
Application	Q173CPU(N)	Q172CPU(N)			
For conveyor assembly SV13 (Motion SFC)	SW6RN-SV13QB	SW6RN-SV13QD			
For automatic machinery SV22 (Motion SFC)	SW6RN-SV22QA	SW6RN-SV22QC			

(b) Integrated start-up support software package

Part name	Model name	flodel name Details						
			Conveyor assembly software	: SW6RN-GSV13P				
			Automatic machinery software	: SW6RN-GSV22P				
		OMODNO COME	Machine tool peripheral software	: SW6RN-GSV43P				
		SW6RNC-GSVE (Integrated start-up support software (1 CD-ROM))	Cam data creation software	: SW3RN-CAMP				
	SW6RNC- GSVPROE		Digital oscilloscope software	: SW6RN-DOSCP				
			Communication system software	: SW6RN-SNETP				
MT Developer			Document print software	: SW3RN-DOCPRNP,				
				SW20RN-DOCPRNP				
		SW6RNC-GSV	OM))					
		Installation manual						
	CMCDNC	SW6RNC-GSVPROE						
	SW6RNC- GSVSETE	A30CD-PCF(SS	C I/F card (PCMCIA TYPE II 1CH/c	eard))				
	GSVSEIE	Q170CDCB	L3M (A30CD-PCF cable 3m (9.84ft.))				

(Note) : Operating environment of the MT Developer is WindowsNT® 4.0/Windows® 98/Windows® 2000/Windows® XP English version only.

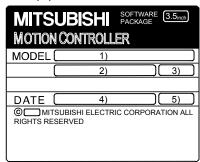
(2) Operating environment of the personal computer

Operating environment is as follows.

IBM PC/AT with which WindowsNT $^{\otimes}$ /Windows $^{\otimes}$ 98/Windows $^{\otimes}$ 2000/Windows $^{\otimes}$ XP English version operates normally.

ltem	WindowsNT® 4.0 (Service Pack 2 or later) (Note) or Windows® 98	Windows [®] 2000	Windows [®] XP				
CPU	Pentium133MHz or more	Pentium II 233MHz or more	Pentium II 450MHz or more				
Memory capacity	Recommended 32MB or more	Recommended 64MB or more	Recommended 192MB or more				
Hard disk free space	Har	d disk free space is as following	list.				
Disk drive	3.5inch (1.44MB) floppy disk drive, CD-ROM disk drive						
Display	800×600 pixels, 256 colors or more						

(Note): Impossible to use USB connection.

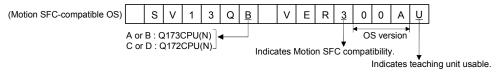

is to the containing capacity appearanting of the container							
	Size						
Model name	SW6RNC-GSVE		SW6RNC-GSVHELPE				
SW6RN-GSV13P	65MB		40MB				
SW6RN-GSV22P	66MB	45MB					
SW6RN-GSV43P	55MB	32MB					
SW3RN-CAMP	5MB		3MB				
SW6RN-DOSCP	35MB		10MB				
	Standard	60MB					
SW6RN-SNETP	Custom (When all selection)	3MB					
SW3RN-DOCPRNP	45MB	5MB					
SW20RN-DOCPRNP	45MB	5MB					

It is necessary the following capacity depending on the installed software.

- (Note-1): WindowsNT®, Windows® are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- (Note-2): Pentium [®] are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

POINT

- (1) When the operation of Windows is not unclear in the operation of this software, refer to the manual of Windows or guide-book from the other supplier.
- (2) The screen might not be correctly displayed depending on the system font size of WindowsNT® 4.0/Windows® 98/Windows® 2000/Windows® XP. Be sure to use the small size fonts.
- (3) Operating system(OS) type/version
 - (a) Confirmation method in the operating system(OS)



- 1) OS software TYPE
- 2) Software version
- 3) OS software version
- 4) Serial number
- 5) Number of FD

Example) When using the Q173CPU(N), SV13 and version A.

- 1) SW6RN-SV13QB
- 2) BCD-B14W276
- 3) A
- (b) Confirmation method in the SW6RN-GSV□P

The operating system(OS) type/version of the connected CPU is displayed on the installation screen of the SW6RN-GSV□P.

(4) Restrictions of the function and PLC CPU by the Motion CPU and software version

The function and PLC CPU which can be used has restrictions by version of the Motion CPU module, operating system software and programming software. The combination of each version and a function is shown below.

		Operating system		CPU i	module v	version	(Note-2)	0 11 6
	Function	software version (Note-1)	Programming software version	Q173 CPU	Q173 CPUN	Q172 CPU	Q172 CPUN	Section of reference
ROM operatio	n	Н	С	М	_	N	_	Chapter 14
·	n (For additional parameter n return parameter, etc.))	N	С	Т	М	U	М	_
Online change		J	F	_	_	_	_	Section 12.3
	unction improvement of the CPU	Н	С	М	_	N	_	Section 3.1 (3)
	ons via network	Н	С	М	_	N	_	Chapter 16
Main operation	n cycle monitor	D	_	_	_	_	_	Chapter 17
	o parameter from the servo	D	_	_	_	_	_	Chapter 18
	MULTR	D	_	_	_	_	_	Section 7.13.7
	MULTW	D	_	J	_	K	_	Section 7.13.6
Motion SFC	OUT	D	_	_	_	_	_	Section 7.9.5
instruction	ТО	Н	С	_	_	_	_	Section 7.13.8
inou douoi	FROM	Н	С	_	_	_	_	Section 7.13.9
	FMOV	R	К	_	_	_	_	Section 7.13.5
Motion dedica		Н	_	М	_	N	_	Section 5.3 to 5.6
Vector inverte	r connectable	К	F	_	_	_	_	_
Basic model C	QCPU (Function version "B") 1CPU)	М	_	_	_	_	_	_
Home position	return functions added	L	F	_	_	_	_	_
Security functi	ion	R	К	_	_	_	_	Chapter 15
	rvo parameter "No.41 and later" Motion controller	R	К	_	_	_		_
	ing for incompletion of home	R	К	_	_	_	_	Section 6.22.1 (Note-3)
Bit device setting by Motion SFC instruction (BMOV, FMOV, MULTW, MULTR, TO, FROM)		S	К	_	_	_	_	Section 7.13.4 to 7.13.9
Mixed function (SV22)	n of virtual mode with real mode	R	К	_	_	_		Section 10.1 (Note-4)
	w switching function (SV22)	R	К	_	_	_	_	Section 10.2 (Note-4)
	page system (linear acceleration/ ystem) for mechanical system 2)	R	К	_	_	_	_	Section 7.2 (Note-4)
Q170ENC (S\		R	К	_	_		_	_
				_	_	_	_	

^{— :} There is no restriction by the version.

(Note-1): SV13/SV22 is the completely same version.

(Note-2): Q173CPUN-T/Q172CPUN-T corresponds from the version A.

 $(Note-3): Q173CPU(N)/Q172CPU(N) \ Motion \ controller \ (SV13/SV22) \ Programming \ Manual \ (REAL \ MODE).$

(Note-4): Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE).

(5) Relevant software packages (a) PLC software package

Model name	Software package
GX Developer	SW□D5C-GPPW-E

(Note) : \square =used "6" or later.

1.3.5 Restrictions on motion systems

- (1) It is not allowed to use the Motion CPU as the control CPU of a module installed on the QA1S6□B extension base unit. PLC CPU must be used as the control CPU.
- (2) The connector for installation of memory card on the Motion CPU module is for future function expansion.
- (3) Motion CPU module cannot be used as standalone module. It must always be used in combination with the PLC CPU module (version that supports Multiple CPU systems). Moreover, it must be installed on the right side of PLC CPU module. PLC CPU module cannot be installed in a position to the right of Motion CPU module.
- (4) Personal computer CPU unit must be installed on the right side of Motion CPU module. Motion CPU module cannot be installed in a position to the right of personal computer CPU unit.
- (5) Make sure to use the PLC CPU module in the "Q mode".
- (6) Motion CPU module cannot be set as the control CPU of intelligent function module or Graphic Operation Terminal (GOT).
- (7) SSCNET cable which connects the Motion CPU and servo amplifier, and the teaching unit connecting cable which connects the Motion CPU and A31TU-D3□/ A31TU-DN□ (Note-1) are pulled from the bottom part of unit. Make sure to secure sufficient space for pulling out the cable when designing the control panel.
- (8) Motion CPU module is one module element of Q series Multiple CPU system. It must be set the parameters of Q series Multiple CPU system for each PLC CPU. Motion CPU module must also be set to support the Multiple CPU system in the system settings.
- (9) Make sure to use the Motion CPU as the control CPU of motion modules dedicated for Motion CPU (e.g., Q172LX, Q172EX^(Note-2), Q173PX). They will not operate correctly if PLC CPU is set and installed as the control CPU by mistake. Motion CPU is treated as a 32-point intelligent module by PLC CPU of other CPU. It cannot be accessed from other CPU.
- (10) When a Multiple CPU system is configured, make sure to configure the modules so that the total current consumption of individual modules on the CPU base does not exceed the 5 VDC output capacity of power supply module.

- (11) Motion modules (Q172LX, Q172EX, Q173PX) is to do selection whether to be necessary referring to the "3. DESIGN" of the "Q173CPU(N)/Q172CPU(N) User's Manual" for the system design.
- (12) Installation position of the Q172EX-S2/S3^(Note-2) is only CPU base unit.

(Note-1): Teaching unit can be used in SV13. It cannot be used in SV22.

(Note-2): Q172EX can be used in SV22. It cannot be used in SV13.

1.4 Multiple CPU System

1.4.1 Overview

(1) Multiple CPU System

Multiple (up to 4 modules) PLC CPUs and Motion CPUs are installed to the CPU base unit, and each CPU controls the I/O modules and intelligent function modules of the CPU base unit/extension base unit slot by slot in the Multiple CPU system.

Each Motion CPU controls the servo amplifiers connected by SSCNET cable.

(2) Distributed system configuration

- (a) By distributing such tasks as servo control, machine control and information control among multiple processors, the flexible system configuration can be realized.
- (b) You can increase the number of control axes by using a multiple Motion CPUs. It is possible to control up to 96 axes by using three Q173CPU(N)s.
- (c) You can reduce the PLC scan time of the overall system by using a multiple PLC CPUs and distributing the PLC control load among them.

(3) Communication among the CPUs in the Multiple CPU system

- (a) Transmission of data among the CPUs in the Multiple CPU system is performed automatically using the multiple CPU automatic refresh function. This makes it possible to use the device data of the other CPUs as the device data of the self CPU.
- (b) You can access the device data and start the Motion SFC program from the PLC CPU to the Motion CPU by Motion dedicated PLC instruction.

1.4.2 Installation of PLC CPU and Motion CPU

Up to a total four PLC CPUs and Motion CPUs can be installed in the CPU base unit, in the four slots starting from the CPU slot (the slot located to the immediate right of the power supply module) to slot 2 in series.

There must be no non-installation slot left, between a PLC CPU and a Motion CPU, or between Motion CPUs.

When two or more Motion CPUs are installed, they are installed together in the slots provided to the right of one or more PLC CPUs. (PLC CPU cannot be installed to the right of a Motion CPU.)

(1) When the high performance model PLC CPU is used.

Number of CPUs	Installation positions of PLC CPUs/Motion CPUs												
		CPU	0	1	2								
2	Power supply	PLC CPU	Motion CPU	I/O, etc.	I/O, etc.								
		CPU	0	1	2				CPU	0	1	2	
3	Power supply	PLC CPU	PLC CPU	Motion CPU	I/O, etc.			Power supply	PLC CPU	Motion CPU	Motion CPU	I/O, etc.	
		CPU	0	1	2				CPU	0	1	2	
	Power supply	PLC CPU	PLC CPU	PLC CPU	Motion CPU			Power supply	PLC CPU	PLC CPU	Motion CPU	Motion CPU	
4		CPU	0										
	Power supply	PLC CPU	Motion CPU	Motion CPU	Motion CPU				_				

(2) When the basic model PLC CPU is used. Multiple CPU system up to 3 modules (PLC CPU \times 1, Motion CPU \times 1, Personal computer CPU \times 1).

1.4.3 Precautions for using Q series I/O modules and intelligent function modules

(1) Modules controllable by the Motion CPU

I/O modules (QX□, QX□-S1, QY□, QH□, QX□Y□, Q6□AD□, Q6□AD-□,

Q6□DA□, Q6□DA-□), interrupt module (QI60) and motion modules (Q172LX,

Q172EX, Q173PX) can be controlled by the Motion CPU.

(2) Compatibility with the Multiple CPU system

- (a) All I/O modules (QX□, QX□-S1, QY□, QH□, QX□Y□, Q6□AD□,Q6□AD-□, Q6□DA□, Q6□DA-□) support the Multiple CPU system.
- (b) The interrupt module (QI60), which is currently not subject to function upgrade, supports the Multiple CPU system.
- (c) The intelligent function modules support the Multiple CPU system only when their function version is B or later. These modules cannot be controlled by the Motion CPU, so be sure to use the PLC CPU as a control CPU.
- (d) All motion modules (Q172LX, Q172EX, Q173PX) support the Multiple CPU system. These modules cannot be controlled by the PLC CPU, so be sure to use the Motion CPU as a control CPU.

(3) Access range from a non-control CPU

- (a) The Motion CPU can access only the modules controlled by the self CPU. It cannot access the modules controlled by other CPUs.
- (b) Access range from a non-control CPU for the modules controlled by the Motion CPU are shown below.

Access	s target	I/O setting from outside the group (setting from the PLC CPU)				
		Not received	Received			
Inpu	t (X)	×	0			
Outp	ut (Y)	×	×			
Buffer memory	Read	×	×			
buller memory	Write	×	×			

REMARK

- The function version of an intelligent function module can be checked on the rated plate of the intelligent function module or in the GX Developer's system monitor product information list.
- Refer to the "Q173CPU(N)/Q172CPU(N) User's Manual" for the model name which can be controlled by the Motion CPU.

1.4.4 Modules subject to installation restrictions

(1) Modules subject to installation restrictions in the Motion CPU are sown below.

Use within the restrictions listed below.

Description	Model name	Maximum installable modules per CPU				
Description	woder name	Q173CPU(N)	Q172CPU(N)			
Servo external signals interface module	Q172LX	4 modules	1 module			
Serial absolute synchronous interface module	Q172EX (Note-1)	6 modules	4 modules			
Manual pulse generator	Q173PX	4 modules (Note-1) (When using the incremental serial encoder.)	3 modules (Note-1) (When using the incremental serial encoder.)			
interface module	(Note-2)	1 module (When using only the Manual pulse generator.)	1 module (When using only the Manual pulse generator.)			
Input module	QX□ QX□-S1					
Output module	QY□	Total 256 points				
Input/output composite module	QH□ QX□Y□					
Analogue input module (Note-3)	Q6□AD□ Q6□AD-□					
Analogue output module (Note-3)	Q6□DA□ Q6□DA-□					
Interrupt module	Q160	1 module				

(Note-1): SV22 only.

(Note-2): When the Manual pulse generator and the serial encoder are used at the same time with the SV22, the Q173PX installed in the slot of the smallest number is used for manual pulse generator input.

(Note-3): A maximum of 4 modules, analogue input modules and analogue output modules, can be used.

- (2) Modules controlled by a Motion CPU cannot be installed in the extension base unit QA1S6□B. Install them in the CPU base unit Q3□B or extension base unit Q6□B.
- (3) A total of eight base units including one CPU base unit and seven extension base units can be used. However, the usable slots (number of modules) are limited to 64 per system including vacant slots. If a module is installed in slot 65 or subsequent slot, an error (SP. UNIT LAY ERROR) will occur. Make sure all modules are installed in slots 1 to 64. (Even when the total number of slots provided by the CPU base unit and extension base units exceeds 65 (such as when six 12-slot base units are used), an error does not occur as long as the modules are installed within slots 1 to 64.)

1.4.5 Processing time of the Multiple CPU system

(1) Processing of the Multiple CPU system

Each CPU module of the Multiple CPU system accesses to the modules controlled by self CPU with which the CPU base unit or extension base unit is installed, and the other CPU through the bus (base unit patterns and extension cables). However, a multiple CPU module cannot use the bus simultaneously. When a multiple CPUs have accessed the bus simultaneously, the CPUs which performed buss access later remain in "waiting state" until the CPU currently using the bus completes its processing. In a Multiple CPU system, the above waiting time (duration while a CPU remains in waiting state) causes an I/O delay or prolonged scan time.

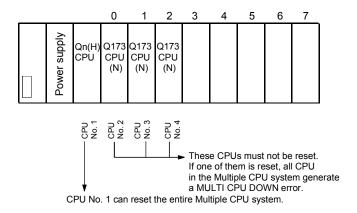
(2) When the waiting time becomes the longest

In the Multiple CPU system, the wait time of self CPU becomes the longest in the following conditions:

- When is using a total of four PLC CPUs/Motion CPUs are used in the Multiple CPU system.
- When the extension base units are used.
- When the intelligent function modules handling large volumes of data are installed in the extension base unit(s).
- When a total of four CPUs are used and the four CPUs have simultaneously accessed a module installed in an extension base unit.
- When there are many automatic refresh points between a PLC CPU and a Motion CPU.

(3) When shortening the processing time of the Multiple CPU system. The processing time of the Multiple CPU system can be shortened in the following methods:

- Install all modules with many access points such as MELSECNET/10(H) and CC-Link refreshes together in the CPU base unit.
- Control all modules with many access points such as MELSECNET/10(H) and CC-Link refreshes using only one PLC CPU so that they are not accessed by two or more CPUs simultaneously.
- Reduce the number of refresh points of MELSECNET/10(H), CC-Link, etc.
- Reduce the number of automatic refresh points of the PLC CPUs/Motion CPUs.


1.4.6 How to reset the Multiple CPU system

With the Multiple CPU system, resetting the PLC CPU of CPU No. 1 resets the entire system.

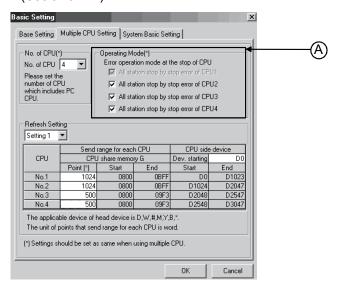
When the PLC CPU of CPU No. 1 is reset, the CPUs, I/O modules and intelligent function modules of all CPUs will be reset.

To recover any of the CPUs in the Multiple CPU system that generated a CPU stop error, reset the PLC CPU of CPU No. 1 or restart the power (i.e., turning the power ON, OFF and then ON).

(If the PLC CPUs or Motion CPUs of CPU Nos. 2 through 4 generated a CPU stop error, they can not be recovered by resetting the corresponding CPU.)

POINT

- (1) In a Multiple CPU system, the PLC CPUs/Motion CPUs of CPU No. 2, 3 or 4 cannot be reset individually.
 - When a PLC CPU or Motion CPU of CPU No. 2, 3 or 4 is reset while the Multiple CPU system is operating, the other CPUs generate a MULTI CPU DOWN error (error code: 7000) and the entire system stops.
 - Note that depending on the timing at which the PLC CPU or Motion CPU of CPU No. 2, 3 or 4 is reset, the PLC CPU of a the other CPU may stop due to an error other than MULTI CPU DOWN.
- (2) Resetting CPU No. 2, 3 or 4 generates a MULTI CPU DOWN error regardless of the operation mode set in the Multiple CPU Settings tab. (Stop/continue all CPUs upon error in CPU No. 2, 3 or 4.) (Refer to section 1.4.7 for the setting of operation mode in Multiple CPU Settings.)

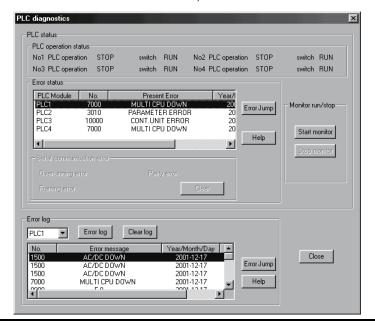

1.4.7 Processing at a CPU DOWN error occurrence by a PLC CPU or Q173CPU(N)/Q172CPU(N)

In the Multiple CPU system, the system operates differently when CPU No. 1 generated a CPU DOWN error as compared with when CPU No. 2, 3 or 4 did.

(1) When CPU No. 1 generated a CPU DOWN error

- (a) When the PLC CPU of CPU No. 1 generated a CPU DOWN error, all PLC CPU/Q173CPU(N)/Q172CPU(N) of CPU Nos. 2, 3 and 4 generate a MULTI CPU DOWN error (error code: 7000) and the Multiple CPU system stops. (Note-1)
- (b) Recover the system using the procedure below:
 - Check the cause of the error that occurred in CPU No. 1 using the PC diagnostic function of GX Developer.
 - 2) Remove the cause of the error.
 - 3) Reset the PLC CPU of CPU No. 1 or restart the power.Resetting the PLC CPU of CPU No. 1 or restarting the power resets all CPUs in the Multiple CPU system and the system is recovered.
- (2) When CPU No. 2, 3 or 4 generated a CPU DOWN error If the PLC CPU, Q173CPU(N) or Q172CPU(N) of CPU No. 2, 3 or 4 generated a CPU DOWN error, the entire system may or may not stop depending on the setting of "Operation Mode" in the Multiple CPU Settings tab.

 By default value, all CPUs will stop when any of the CPUs generates a CPU stop error. If you do not wish to stop all CPUs following an error generated in the PLC CPU, Q173CPU(N) or Q172CPU(N) of a specific CPU or CPUs, click and uncheck the CPU or CPUs that will not stop all CPUs upon generating an error. (See arrow A.)


- (a) When a CPU DOWN error occurs in the CPU of the CPU in a checked "Stop all CPUs upon error in CPU No. n" item, all PLC CPU/Q173CPU(N)/ Q172CPU(N) of the other CPUs will generate a MULTI CPU DOWN error (error code: 7000) and the Multiple CPU system will stop. (Note-1)
- (b) When a CPU DOWN error occurs in the CPU of the PLC in an unchecked "Stop all CPUs upon error in CPU No. n" item, all CPUs of the other CPUs will generate a MULTI CPU ERROR (error code: 7020) and continue their operation.

POINT

(Note-1): When a CPU DOWN error occurs, the CPU detecting the error will generate a MULTI CPU DOWN error.

Therefore, the system may enter a MULTI CPU DOWN mode after detecting the CPU DOWN error in the CPU generating a MULTI CPU DOWN error, instead of the error in the CPU that generated the CPU DOWN error in the first place. In this case, the common error-data area may store a CPU number different from one corresponding to the CPU that generated the CPU DOWN error first. When recovering the system, remove the cause of the error present in the CPU not stopped by a MULTI CPU DOWN error.

In the screen below, the cause of the error present in CPU No. 2, which does not have a MULTI CPU DOWN error, should be removed.

- (c) Use the following procedure to recover the system:
 - 1) Check the CPU generating the error and cause of the error using the PC diagnostic function of GX Developer.
 - If the error occurred in a Q173CPU(N)/Q172CPU(N) and the error code is 10000, check the cause of the error using error list of SW6RN-GSV□P.
 - 3) Remove the cause of the error.
 - 4) Reset the PLC CPU of CPU No. 1 or restart the power.
 - 5) Resetting the PLC CPU of CPU No. 1 or restarting the power resets all CPUs in the Multiple CPU system and the system will be recovered.

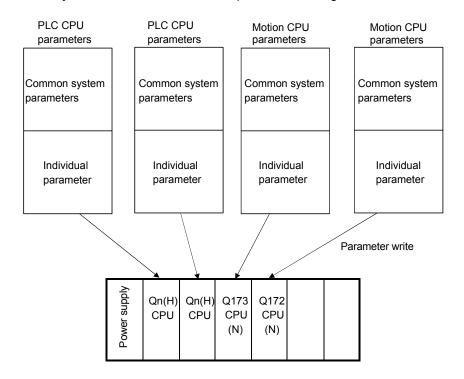
(3) Operation at a Motion CPU error

Operations at a Motion CPU error are shown below.

Category	Type of error	Operation	Remark	
Operation disable errors	System setting error	Does not operate from the beginning (does not run).	All actual output PY points turn OFF. No effect on other CPUs.	
	WDT error	Varies depending on the error.	All actual output PY points turn OFF.	
	Self-diagnosis error	Stops at a CPU DOWN error.	Other CPUs may also stop depending on the parameter setting.	
	Other CPU DOWN error	Operation corresponding to STOP (M2000 OFF). Depends on the "Operation mode upon CPU stop error" setting.	All actual output PY points turn OFF.	
Operation continuous enable errors	Self-diagnosis error	Operation continues when the continuous error occurred.		
	Motion SFC error		Only the applicable program stops (the program may continue depending on the type of error)	
	Minor error	Processing stops for each		
	Major error	program or axis instead of the Motion CPU stopping all the		
	Servo error		type of error).Actual output PY retains output.	
	Servo program setting error	processing.	No effect on other CPUs.	

1.5 System Settings

1.5.1 System data settings


The table below lists the system data items to be set.

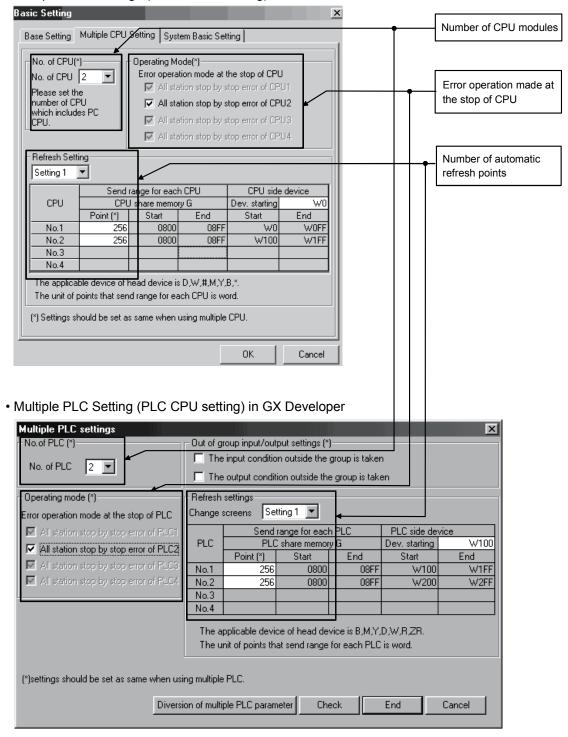
		Item	Setting range	Initial value	Remark
Common system parameters	Base setting	CPU base	2/3/5/8/10/12 slots	CPU base : 2 slots	Set the number of slots in the CPU base
	Dase setting	Extension base			or extension base.
	Multiple CPU setting	Number of Multiple CPUs	2/3/4 modules	2 modules	Set the total number of Multiple CPUs including PLC CPU(s).
		Automatic refresh setting	Up to 2k words of devices (D/W/#/M/Y/B) can be set per CPU for settings 1 to 4.	None	Set the automatic refresh between CPUs using Multiple CPU shared memory.
		Error operation mode at the stop of CPU	Stop/do not stop all CPUs upon an error in CPU Nos. 1/2/3/4. (The setting range varies depending on the number of Multiple CPUs installed.)	Stop all CPUs upon error in CPU Nos. 1/2/3/4	Set whether or not to stop the entire system when a CPU stop error occurs in each CPU.
	Motion slot	Module arrangement	Within the CPU base and extension base slots	None	Install the modules controlled by the self CPU in the CPU base and/or extension base(s).
	setting	Individual module	Varies depending on the module.	Varies depending on the module.	Set detailed items for each module controlled by the self CPU.
		Operation cycle setting	0.8 ms/1.7 ms/3.5 ms/7.1 ms/14.2ms/Auto	Auto	Set the operation cycle of motion control.
Individual parameters	Basic system setting	Operation at STOP to RUN	M2000 is turned on with switch (STOP to RUN). M2000 becomes a switch set (STOP to RUN) + register by single- unit with turning on.	M2000 is turned on with switch (STOP to RUN).	Set the condition in which the PLC ready flag (M2000) turns on.
		Forced stop (Note)	None/X (PX) (0 to 1FFF)/ M (0 to 8191)	None	Set the bit device used for forced stop.
		Latch range	M (0 to 8191)/B (0 to 1FFF)/F (0 to 2047)/D (0 to 8191)/W (0 to 1FFF)	None	Set the latch range of device memory.
	Self CPU installation position setting		Set self CPU/another CPU/CPU (empty) for slots 0/1/2. (The setting range varies depending on the number of Multiple CPUs installed.)	None (When two CPUs are installed, slot 0 is fixed as the self CPU.)	Set the installation position of the self CPU in the CPU base.
	Servo amplifier/motor setting		Q173CPU(N): Up to 2 systems, 32 axes Q172CPU(N): Up to 1 system, 8 axes	None	Set the model name, axis No. and other details for the servo amplifiers and servomotors.
	High-speed read setting		One Q172EX/Q173PX module and one input module.	None	Set the high-speed read data. Refer to "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (Real Mode)" for the high-speed read function.
	Battery setting		External battery unused/ External battery used	External battery unused.	Set whether or not to use an external battery. If the power supply is down for one month or longer, data must be backed up with an external battery. Refer to "Q173CPU(N)/Q172CPU(N) User's Manual" for external battery.

(Note): The forced stop can also be executed by the forced stop terminal of the servo amplifier besides the forced stop input setting.

1.5.2 Common system parameters

(1) Parameters for operating the Multiple CPU system
In the Multiple CPU system, the common system parameters and individual parameter for each CPU are set and written into each CPU. Regarding the Motion CPU, the items in System Settings related to the entire Multiple CPU system must be identical to the parameter settings in the PLC CPU.

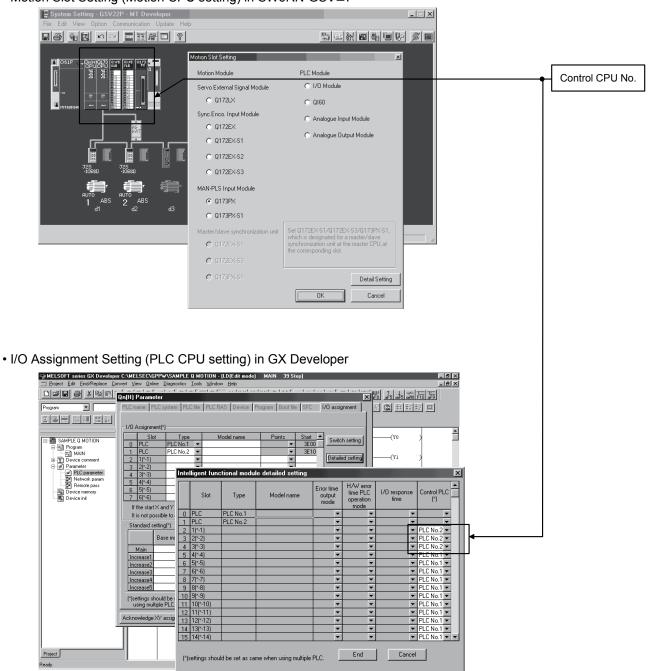
(2) Parameters common throughout the Multiple CPU system
In the Motion CPU, during initialization the parameters in the table below are
verified against the parameters in the PLC CPU of CPU No. 1. Unmatched
parameters generate a PARAMETER ERROR (error code: 3012), so the
parameters show below must be set identically between Motion CPUs and the
PLC CPU of CPU No. 1. (If the system settings are changed in a Motion CPU, it
is necessary to reset. Therefore, the parameters are checked only during
initialization.)


PLC CPUs can use the parameters of the other CPUs via "Multiple CPU parameter utilization" in GX Developer. Since Motion CPUs don't have this function, however, the common parameters must be set for each Motion CPU.

Type of parameter			Verification item		Remark
Name in Motion CPU	Name in PLC CPU		verification item		Remark
	Number of Multiple CPUs		Number of CPU modules		
Multiple CPU settings	Operation mode		Operation mode when a CPU stop error occurred		
	Automatic refresh setting		Number of automatic refresh points		
Motion slot settings	I/O assignment	Control CPU	Control CPU No.		Only the module numbers set in System Settings on the Motion CPU side are verified.
		Basic settings	Total number of bases		Not verified if base settings
Base settings			Base	Base No.	are omitted on the PLC CPU
				Number of base slots	side.

(a) Multiple CPU settings

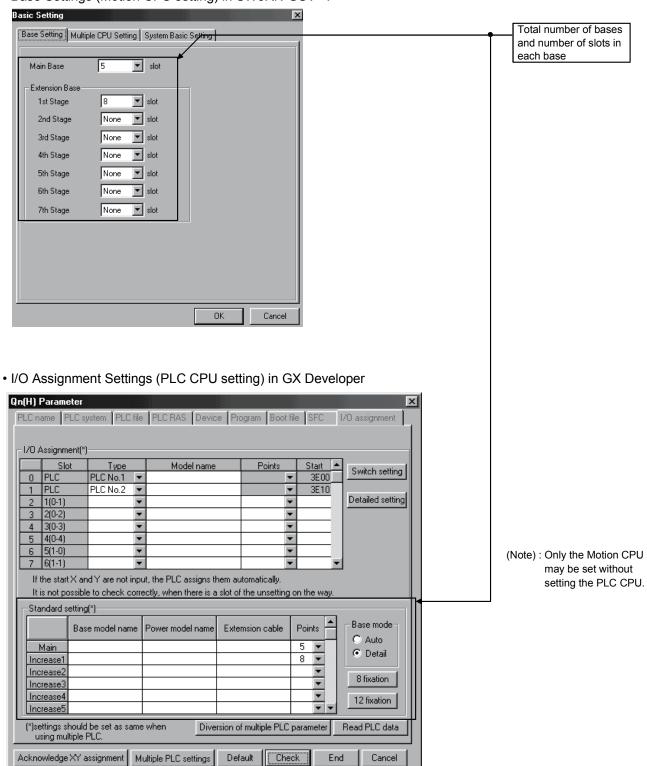
Set the following items identically in Multiple CPU Settings (Motion CPU setting) in SW6RN-GSV□P and in Multiple CPU Settings (PLC CPU setting) in GX Developer.


- · Number of CPU modules
- · Operation mode when a CPU stop error occurred
- Number of automatic refresh points (Settings 1 to 4 must be the same for all CPUs)
- Multiple CPU Settings (Motion CPU setting) in SW6RN-GSV□P

(b) Motion slot settings

Set the modules controlled by the self CPU by the Motion Slot Settings (Motion CPU setting) in SW6RN-GSV□P. In GX Developer, set the slot for Motion CPU control as the CPU number of the Motion CPU in I/O Assignment Settings (PLC CPU setting).

• Motion Slot Setting (Motion CPU setting) in SW6RN-GSV□P

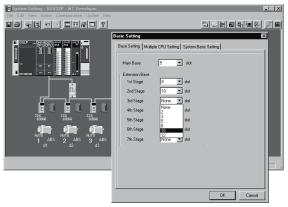


(Note): Motion slot setting items are different depending on the operating system software.

(c) Base settings

Set the total number of bases and number of slots in each base identically between Base Settings (Motion CPU setting) in SW6RN-GSV□P and I/O Assignment Settings (PLC CPU setting) in GX Developer. In GX Developer, the detailed settings may be omitted by setting the base mode "Automatic".

• Base Settings (Motion CPU setting) in SW6RN-GSV□P


POINT

GOT is recognized as an intelligent function modules "16 points \times 10 slots" on the base (number of extension bases and slot No. are set in the GOT parameter.) for bus connection with GOT.

Set the one extension base (16 points \times 10 slots) for connection with GOT, then set "10 slots" as number of extension bases for connection with GOT in the system setting (base setting).

<Example>

When the "2nd stage" of extension base is set as connection with GOT. (Set "10" slot as "2nd stage" of extension base in the base setting.)

If the bus connection with GOT is executed without above settings in the base setting of system setting, "SP.UNIT LAY ERROR" (error code: 2124) will occur.

1.5.3 Individual parameters

(1) Basic system settings

The following explains each item to be set in Basic System Settings.

- (a) Operation cycle setting
 - Set the of motion operation cycle (cycles at which a position command is computed and sent to the servo amplifier).
 The setting range is 0.8ms/1.7ms/3.5ms/7.1ms/14.2ms/Automatic setting. The actual operation cycle corresponding to 0.8ms is 0.888...ms.
 Similarly, 1.7ms corresponds to 1.777...ms, 3.5ms to 3.555...ms, 7.1ms to 7.111...ms, and 14.2ms to 14.222...ms, respectively.
 - 2) The default value is "Automatic setting". When "Automatic setting" is selected, the operation cycle is set according to the table below based on the number of axes for servo amplifier set in the System Settings.

Operating system	Number of axes	Operation cycle setting	
	1 to 8 axes	0.8 ms	
SV13	9 to 16 axes	1.7 ms	
	17 to 32 axes	3.5 ms	
	1 to 4 axes	0.8 ms	
CV/22	5 to 12 axes	1.7 ms	
SV22	13 to 24 axes	3.5 ms	
	25 to 32 axes	7.1 ms	

- 3) If the duration of motion operation has exceeded the operation cycle, the operation cycle over flag (M2054) turns ON. Even when "Automatic setting" is selected, the duration of motion operation may exceed the operation cycle depending on the control conditions. The actual duration of motion operation (unit:µs) is stored in the D9188, and the current setting of operation cycle (unit:µs) is stored in the D9197. Monitor these special registers and adjust the set value of operation cycle so that the actual duration of motion operation will not exceed the set operation cycle. (A WDT or other error may occur in the Motion CPU.)
- 4) The MR-H□BN does not support an operation cycle of 0.8 [ms]. If the MR-H□BN is set in the System Settings, 1.7 [ms] is used as the actual operation cycle even when 0.8 [ms] is set.
- 5) The MR-J2S-□B supports an operation cycle of 0.8 [ms] and 1.7 [ms] in version B0 or later. When using the MR-J2S-□B of Version A4 or earlier, set the operation cycle as 3.5 [ms] or more.
- 6) The vector inverter does not support an operation cycle of 0.8 [ms] and 1.7 [ms]. If the FR-V500 is set in the System Setting, 3.5[ms] is used as the actual operation cycle even when 0.8 [ms] or 1.7 [ms] is set.

(b) Operation setting upon STOP → RUN Set the condition in which the "PLC ready" flag (M2000) turns ON. Select one of the following:

- M2000 ON upon switching (STOP → RUN) (default)
 Condition in which the M2000 turns from OFF to ON
 - Change the RUN/STOP switch from the STOP side to the RUN side.
 - With the RUN/STOP switch set to the RUN side, turn ON the power or cancel the reset.

Condition in which the M2000 turns from ON to OFF

- Change the RUN/STOP switch from the RUN side to the STOP side.
- 2) M2000 ON upon switching (STOP → RUN) + 1 set in setting register (The M2000 turns ON when the switch is set to the RUN side and 1 is set in the setting register.)

Condition in which the M2000 turns from OFF to ON

 With the RUN/STOP switch set to the RUN side, set 1 in the setting register for "PLC ready" flag (D704). (The Motion CPU detects a change from 0 to 1 in the lowest bit in the D704).

Condition in which the M2000 turns from ON to OFF

- With the RUN/STOP switch set to the RUN side, set 0 in the setting register for "PLC ready" flag (D704). (The Motion CPU detects a change from 1 to 0 in the lowest bit in the D704).
- Change the RUN/STOP switch from the RUN side to the STOP side.
- (c) Forced stop input setting

Specify the bit device used for executing a forced stop in which all servoamplifier axes are stopped immediately.

Either X (PX) or M can be specified. No default value has been set. The set bit device is designated as contact B and performs the following control in response to ON/OFF of the device.

- Bit device is turned OFF --- Forced stop input is ON (forced stop)
- Bit device is turned ON --- Forced stop input is OFF (forced stop is released.)
- (d) Latching range setting

Set the following latching ranges for M, B, F, D and W, respectively.

- Range in which the latch can be cleared with the latch clear key (Latch (1))
- Range in which the latch cannot be cleared with the latch clear key (Latch (2))

(2) Individual module settings

The setting items for each module are shown below.

Setting items for each module

Module name		Item	Cotting range	Initial value	Number of us	able modules
		item	Setting range	miliai value	Q173CPU(N)	Q172CPU(N)
		External signal setting	Set the number of axes for which the 8 axes input is used.	1 to 8 axes used		
Q172LX	Servo external signals input module	DOG/CHANGE turning OFF to ON/ON to OFF	DOG/CHANGE input turning OFF to ON or turning ON to OFF	Turning OFF to ON	4	1
		Input response time	0.4/0.6/1 ms (DOG/CHANGE response time)	0.4 ms		
		Serial encoder use setting	Used/Unused	Unused		
Q172EX Serial encoder input module	Serial encoder selecting	Q170ENC/MR-HENC	• Q172EX(-S1) use MR-HENC • Q172EX-S2/S3 use Q170ENC	6 (SV22)	4 (SV22)	
		Input response time	0.4/0.6/1 ms (TREN response time)	0.4 ms	, ,	,
		High-speed read setting	Used/Unused	Unused		
		Manual pulse generator setting (SV13)	Used only	Used		
Q173PX	Manual pulse generator input module	Serial encoder/Manual pulse generator setting (SV22)	Used/Unused	P□ Used	1 (SV13) 4 (SV22)	Q172CPU(N)
		Input response time	0.4/0.6/1 ms (TREN response time)	0.4 ms		
		High-speed read setting	Used/Unused	Unused		
Q160	Interrupt module	Input response time	0.1/0.2/0.4/0.6/1 ms	0.2 ms	1	1

Setting items for each module (Continued)

Madula		Itana	Cotting range	Initial value	Number of us	able modules
Module	e name	Item	Setting range	initiai value	Q173CPU(N)	Q172CPU(N)
		First I/O No.	00 to FF0 (in units of 16 points)	0		
		Number of I/O points	0/16/32/64/128/256	16		
QX□/		High-speed read setting	Used/Unused	Unused		
QX□-S1	Input module	Input response time setting				
Q∧⊟-01		(setting for high-speed	1/5/10/20/70 ms	10 ms		
		input module in	(0.1/0.2/0.4/0.6/1 ms)	(0.2 ms)		
		parentheses)				
QY□	Output module	First I/O No.	00 to FF0 (in units of 16 points)	0		
QTU	Output module	Number of I/O points	0/16/32/64/128/256	16		
		First I/O No.	00 to FF0 (in units of 16 points)	0		
	Input/Output	Number of I/O points	0/16/32/64/128/256	16		
QH□/QX□Y□	composite module	Input response time setting	1/5/10/20/70 ms	10 ms		
	module	High-speed read setting	Used/Unused	Unused		
		First I/O No.	00 to FF0 (in units of 16 points)	0		
Q6□AD□/ Q6□AD-□	Analogue input module (Note-1)	Input range setting	4 to 20mA/0 to 20mA/1 to 5V/0 to 5V/-10 to 10V/0 to 10V/User range	4 to 20mA	Total 256	Total 256
		Temperature drift compensation	Used/None	Used	points or less	points or less
		Resolution mode	Normal/High	Normal	1	
		Operation mode	Normal (A/D conversion)/Offset gain setting	Normal (A/D conversion)		
		First I/O No.	00 to FF0 (in units of 16 points)	0		
		Output range setting	4 to 20mA/0 to 20mA/1 to 5V/0 to 5V/-10 to 10V/User range	4 to 20mA		
	A	HOLD/CLEAR function setting	CLEAR only	CLEAR	CLEAR	
Q6□DA□/ Q6□DA-□	Analogue output module (Nofe-1)	Output mode	Normal (Asynchronous)/ Synchronous output	Normal (Asynchro- nous)		
		Resolution mode	Normal/High	Normal		
		Operation mode	Normal (D/A conversion)/ Offset gain setting	Normal (D/A conversion)		

(Note-1): A maximum of 4 modules, analogue input modules and analogue output modules, can be used.

(3) System setting errors

Motion CPUs generate a system configuration error under the following conditions:

Error name	Error code (Note-1)	Error cause	Check timing	Operation at error occurrence
LAY ERROR (SL * *)		The slot set in system settings is vacant or a different module is installed.		
AXIS No. MULTIDEF		Duplicate axis No. is set in system settings.		
AMP No. SETTING		Not a single axis is set in system settings.		Cannot be
SYS.SET DATA ERR	10000 (Note-2)	 System setting data is not written. System setting data is written without relative check. Or it is written at the state of error occurrence. 		started. (Motion CPU system setting
AXIS No. ERROR		System setting data is not written.		error)
I/O POINTS OVER		The number of actual I/O points set in system settings exceeds 256.		
SP. UNIT LAY ERROR	2121	 A CPU module is installed in a slot except for a CPU slot or slot 0 to 2. 		
SP. UNIT LAY ERROR	2124 (Note-3)	 A module is installed in slot 65 or subsequent slot. A module is installed in a base for which "None" is set in base settings. 		
SP. UNIT LAY ERROR	2126	 There are non-installation slots between the CPU modules. The modules except for the PLC CPU are installed between the PLC CPU modules. 	When the power is turned ON/	
PARAMETER ERROR	3010	 The number of CPU modules set in the parameter differ from the real installation in a Multiple CPU system. 	the key is reset	
PARAMETER ERROR	3012	 The reference CPU No. set in the parameter differ from the setting in a Multiple CPU system. 		Cannot be started.
PARAMETER ERROR	3013	 Multiple CPU automatic refresh setting is any of the followings in a Multiple CPU system. When a bit device is set as a refreshed, a number except for a multiple of 16 is set as the refresh first device. A non-specifiable device is specified. The number of transmitting points is an odd number. 		(Multiple CPU system CPU DOWN error)
MULTI EXE. ERROR	7010	 A fault CPU is installed in a Multiple CPU system. CPUs of unmatched versions are installed in a Multiple CPU system. (An error is detected at the PLC CPU of function version B.) Any CPU No. among CPU No.2 to 4 was reset, after power on a Multiple CPU system. (This error occurs by the reset CPU No.) 		

(Note-1): The error code stored in the diagnosis error area of the self operation information area in the Multiple CPU shared memory.

(Note-3): Base settings must be performed in System Settings of the Motion CPU even for those bases in which the modules controlled by the self CPU are not installed.

⁽Note-2): When an error code 10000 is displayed, the M2041 ("System setting error" flag) turns ON and an applicable error name shown above is displayed on the error list monitor of the programming software package.

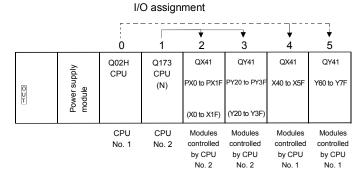
1.6 Assignment of I/O No.

I/O No.s used in the Multiple CPU system include those used by the Motion CPU to communicate with I/O modules/intelligent function modules and those used in the communication between the PLC CPU and the Motion CPU. The following explains each I/O No. and assignment of I/O No..

1.6.1 I/O No. for I/O modules and intelligent function modules

In the Multiple CPU system, the "0H" position(slot) of I/O No. which seen from the PLC CPU is different from the position in the case of a standalone CPU. However, I/O No. of the control module may be assigned independently for each CPU in the Motion CPU.

(1) "0H" position of I/O No.


- (a) In the Multiple CPU system, the slots corresponding to the number of units set by a multiple CPU parameter are occupied by the PLC CPU/Motion CPU.
- (b) I/O modules and intelligent function modules are installed in slots available to the right of those occupied by the PLC CPU/Motion CPU.
- (c) I/O No. of the control module may be assigned independently for each CPU in the Motion CPU. I/O No. of the PLC CPU control modules are assigned sequentially toward the right, starting from "0H" being the I/O module or intelligent function module installed to the immediate right of the slots occupied by the PLC CPU/Motion CPU.
- (d) Notation of I/O No.
 - Receiving of ON/OFF data by the Motion CPU is deemed input (PX), while outputting of ON/OFF data from the Motion CPU is deemed output (PY).
 - I/O No. is expressed in hexadecimal.

(2) Assignment of I/O No. to the Motion CPU control module

Mitsubishi recommends that I/O No. assignment be set as common consecutive No. throughout all CPUs.

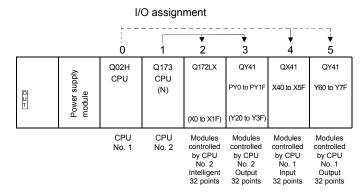
However, the I/O No. of the Motion CPUs control input modules, output modules and input/output composite modules may also be set independently of the I/O No. of the PLC CPU control modules.

(The I/O No. of the Motion CPU control modules are indicated with a PX/PY.) The I/O No. of the Motion CPU control modules are invalid during I/O Assignment Settings of the PLC CPU.

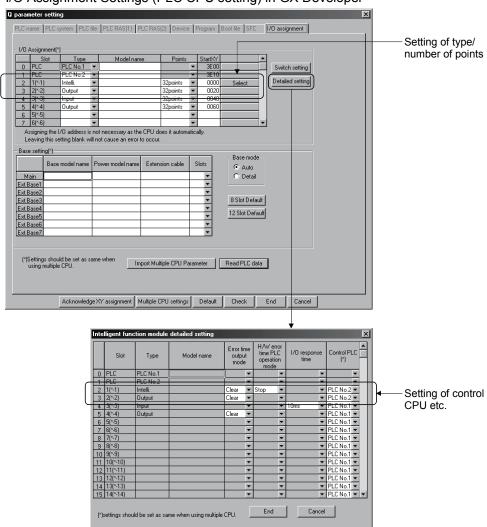
(3) Setting of the Motion CPU control modules by the PLC CPU

(a) Type/number of points

Follow the table below when Motion CPU control modules are set in I/O Assignment Settings of the PLC CPU. (The PLC CPU handles the Q172LX, Q172EX and Q173PX as intelligent function modules having 32 occupied points.) Type and number of points may be left unset.


Module name	Туре	Number of points	Remarks
Input module	Input		For the control CPU,
Output module	Output	Selected according	set the CPU that
Input/Output composite module	Composite I/O	to the module.	corresponds to the Motion CPU (required).
Analogue input module	Analogue input		Type and number of
Analogue output module	Analogue output	16 points	points may be left
Interrupt module (QI60)	Interrupt		unset.
Q172LX		32 points	
Q172EX	Intelligent	32 points	
Q173PX		32 points	

POINT


- (1) Set the I/O device of the Motion CPU within the range from PX/PY000 to PX/PYFFF. Set the number of real I/O points within 256 points. (I/O No. may not be consecutive.)
- (2) As for the Motion CPU, the Q172LX, Q172EX, Q173PX and QI60 are not included in the number of real I/O points.
 - (b) If the installed Motion CPU control module is different from the I/O assignment type of PLC CPU, the operation is abnormal.

Name of installed Motion CPU control module	I/O assignment type of PLC CPU	Operation
land of the advila	High-speed input/Output/Composite I/O	Operation is abnormal. (An error does not occur.)
Input module	Interrupt/Intelligent	Error 2100 (SP.UNIT LAY ERR.)
Outro to see a deale	Input/High-speed input/Composite I/O	Operation is abnormal. (An error does not occur.)
Output module	Interrupt/Intelligent	Error 2100 (SP.UNIT LAY ERR.)
Input/Output composite	Input/High-speed input/Output	Operation is abnormal. (An error does not occur.)
module	Interrupt/Intelligent	Error 2100 (SP.UNIT LAY ERR.)
Analogue input module, Analogue output module,	Input/High-speed input/Output/ Composite I/O	Error 2100 (SP.UNIT LAY ERR.)
Q172LX, Q172EX, Q173PX	Interrupt	Operation is abnormal. (An error does not occur.)
Interrupt module (QI60)	Input/High-speed input/Output/ Composite I/O	Error 2100 (SP.UNIT LAY ERR.)
	Intelligent	Operation is abnormal. (An error does not occur.)
All module	Not used	Operation is abnormal. (An error does not occur.)

(c) Example of setting

I/O Assignment Settings (PLC CPU setting) in GX Developer

1.6.2 I/O No. of PLC CPU and Q173CPU(N)/Q172CPU(N)

In the Multiple CPU system, I/O No. is assigned to the PLC CPU/Motion CPU to enable communication between the PLC CPU and Motion CPU using the following instructions:

- · The Multiple CPU dedicated instructions
- · The Motion CPU dedicated instructions
- · The Multiple CPU communication dedicated instructions

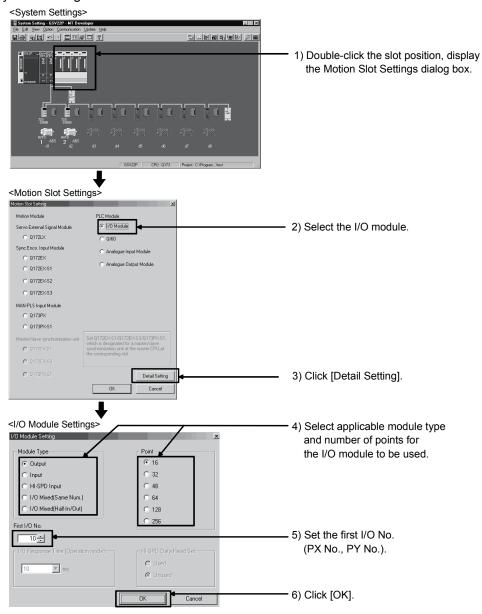
The I/O No. of the PLC CPU/Motion CPU are fixed based on the installed slots and cannot be changed.

The table below lists the I/O No. of the PLC CPU/Motion CPU installed in the CPU base unit of the Multiple CPU system.

CPU installation position	QCPU slot	Slot 0	Slot 1	Slot 2
Head I/O number	3E00H	3E10H	3E20H	3E30H

The I/O No. of the PLC CPU/Motion CPU are used in the following cases:

- When writing data to the shared CPU memory of the self CPU using the S. TO instruction.
- When reading data from the shared CPU memory of the other CPU using the FROM instruction.
- When reading data from the shared CPU memory of the other CPU using an intelligent function module device (U□\G□)
- When reading device data directly from the Motion CPU from the PLC CPU using the "S(P). DDRD" instruction.
- When writing device data directly to the Motion CPU from the PLC CPU using the "S(P).DDWR" instruction.


REMARK

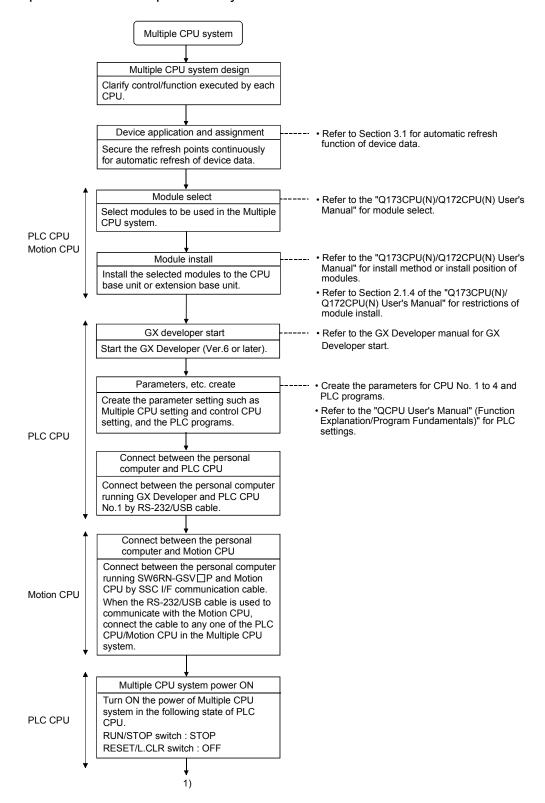
 Refer to Chapter "3. COMMUNICATION BETWEEN THE PLC CPU AND THE MOTION CPU IN THE MULTIPLE CPU SYSTEM" for communication between the PLC CPU and the Motion CPU.

1.6.3 Setting I/O No.

The procedure for the I/O No. setting for the Motion CPU in System Settings of SW6RN-GSV□P is shown below. In the Motion CPU, by setting a module used in each CPU base or extension base slot in System Settings, the control CPU of the applicable slot is assigned as the self CPU. Input modules, output modules and composite I/O modules require an I/O No. to be set.

Refer to the help of SW6RN-GSV P for the detailed operating procedure on the System Settings screen.

(Note): Display of system setting and motion slot setting are different depending on the operating system software.


POINT

I/O No.s cannot be assigned automatically, unlike a PLC CPU for which I/O No. are assigned automatically if such setting is omitted in the Motion CPU. In the Motion CPU, be sure to set the first I/O No. in System Settings for each module used.

2. STARTING UP THE MULTIPLE CPU SYSTEM

This section describes a standard procedure to start up the Multiple CPU system.

2.1 Startup Flow of the Multiple CPU System

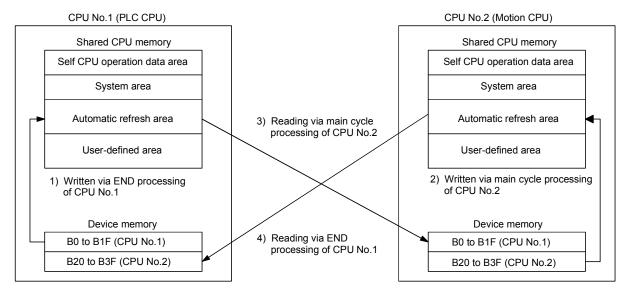
(Note): Installation of the operating system software is required to the Motion CPU module before start of the Multiple CPU system.

Refer to Chapter 5 of the "Q173CPU(N)/Q172CPU(N) User's Manual" for installation of the Motion CPU operating system software.

3. COMMUNICATION BETWEEN THE PLC CPU AND THE MOTION CPU IN THE MULTIPLE CPU SYSTEM

The following tasks can be performed between the PLC CPU and the Motion CPU in the Multiple CPU system.

- Data transfer between CPUs by the automatic refresh function of the shared CPU memory
- Control instruction from the PLC CPU to Motion CPU by the Motion dedicated Instructions
- Reading/writing device data from the PLC CPU to Motion CPU by the dedicated instruction


3.1 Automatic Refresh Function of The Shared CPU Memory

(1) Automatic refresh function of the shared CPU memory

(a) The automatic refresh function of the shared CPU memory is executed automatically the data transfer between CPUs in the Multiple CPU system during END processing in the PLC CPU or during main cycle processing (free time except motion control) in the Motion CPU.

When the automatic refresh function is used, the data in the device memory of the other CPU is read automatically, so the device data of other CPU can be used as the device data of self CPU.

The diagram below illustrates the automatic refresh operation involving 32 points (B0 to B1F) for the PLC CPU of CPU No.1 and 32 points (B20 to B3F) for the Motion CPU of CPU No.2.

Processing details of CPU No.1 (PLC CPU) at the END processing.

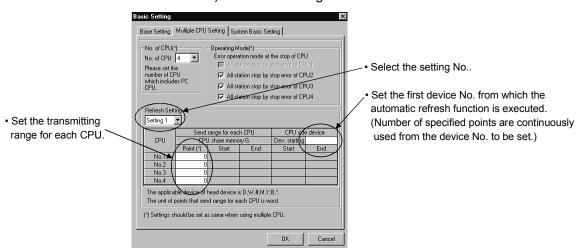
- 1): Data of transmitting devices B0 to B1F for CPU No.1 is transferred to the automatic refresh area of shared memory in the self CPU.
- 4): Data in the automatic refresh area of shared memory in CPU No.2 is transferred to B20 to B3F in the self CPU.

Processing details of CPU No.2 (Motion CPU) at main cycle processing.

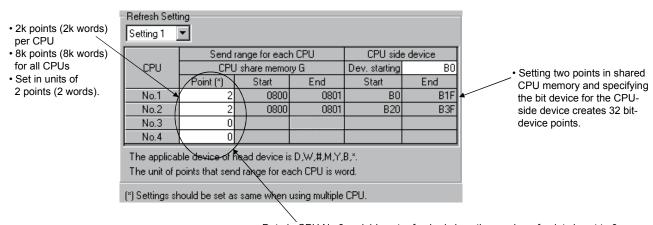
- 2): Data of transmitting devices B20 to B3F for CPU No.2 is transferred to the automatic refresh area of shared memory in the self CPU.
- 3): Data in the automatic refresh area of shared memory in CPU No.1 is transferred to B0 to B1F in the self CPU.

By the above operations, the data written to B0 to B1F in CPU No.1 can be read as B0 to B1F of CPU No.2, while the data written to B20 to B3F in CPU No.2 can be read as B20 to B3F of CPU No.1. B0 to B1F of CPU No.1 can be read or written freely using CPU No.1, but B20 to B3F correspond to the refresh area for the data of CPU No.2 and can only be read, not written, by CPU No. 1. Similarly, B20 to B3F of CPU No.2 can be read or written freely using CPU No.2, but B0 to B1F correspond to the refresh area for the data of CPU No.1 and thus can only be read, not written, by CPU No.2.

- (b) Executing the automatic refresh function
 - The automatic refresh function can be executed regardless of whether the applicable PLC CPU and Motion CPU are in the RUN or STOP state. When a CPU DOWN error will occur in the PLC CPU or Motion CPU, the automatic refresh function is not executed.
 - When one CPU generated a CPU DOWN error, the other CPU free from CPU DOWN error retains the data saved immediately before the CPU DOWN error occurred. For example, if CPU No.2 generated a CPU DOWN error while B20 was ON in the operation block diagram in (a), B0 of CPU No.1 remains ON. If necessary, interlocking is performed using other-CPU DOWN detection signals M9244 to M9247.
- (c) To execute the automatic refresh function, for the Motion CPU the number of transmitting points for the CPU and the devices whose data is stored (devices to which the automatic refresh function is executed) must be set in Multiple CPU Settings of System Settings. For the PLC CPU, the applicable parameters must be set identically in Multiple CPU Settings of PC parameters.


Item		Description	
Type of refresh device	Bit	Y, M, B (Set the first device No. as a multiple of 16 in modules of 32 bits.)	
Word		D, W, # (Set in modules of 2 words.)	
Number of refresh device range settings		4 ranges (Bit and word may be mixed.)	
Number of refresh words per CPU		A maximum of 8k words	
Number of transmitting words	per CPU	A maximum of 2k words (Set in units of 2 words.)	

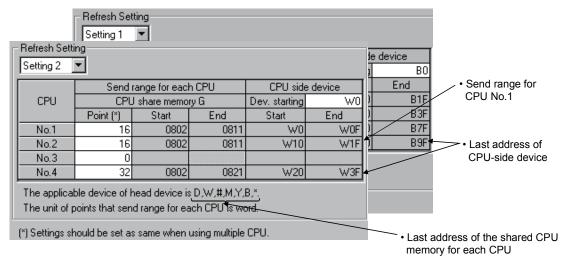
/ CAUTION


 If necessary, perform interlocking during the execution of the automatic refresh function using other CPU DOWN detection signals M9244 to M9247.

(2) Automatic refresh settings 1 (Automatic setting)

(a) When executing the automatic refresh function of shared CPU memory, set the number of each CPU's transmitting points and devices in which data is to be stored using Multiple CPU Settings of System Settings. Refer to the "QCPU User's Manual (Function Explanation/Program Fundamentals)" about the setting of the PLC CPU.

- (b) Setting number selection/send range (refresh range) for each CPU
 - The refresh setting of four ranges can be set by setting selection.
 For example, ON/OFF data may be refreshed using bit-device setting, while other data may be refreshed using word device setting.
 - 2) The number of points in the shared CPU memory set in units of 2 points (2 words) is set in the range for each CPU. (2 points if word device is specified for the CPU-side device, or 32 points if bit device is specified.) Data of the CPUs for which "0" is set as the number of points representing the send range of the CPU will not be refreshed. Assume that 32 points (B0 to B1F) of CPU No.1 and 32 points (B20 to B3F) of CPU No.2 are to be refreshed. Since one point in the shared CPU memory corresponds to 16 bit-device points, the number of transmitting points becomes 2 for CPU No. 1 and also 2 for CPU No. 2.
 - 3) The maximum number of transmitting points combining all four ranges is 2k words per CPU (PLC CPU or Motion CPU) or 8k points (8k words) for all CPUs.



4) The shared CPU memory to be occupied during execution of the automatic refresh function covers all areas corresponding to settings 1 to 4.

When the number of transmitting points is set, the first and last addresses of the shared CPU memory to be used are indicated in hexadecimals

The CPU for which the number of transmitting points is set in settings 1 and 2 use the last address of shared CPU memory in setting 2. (In the example below, CPU No.1 and No.2 are using the area up to 811H, while CPU No.4 is using the area up to 821H.)

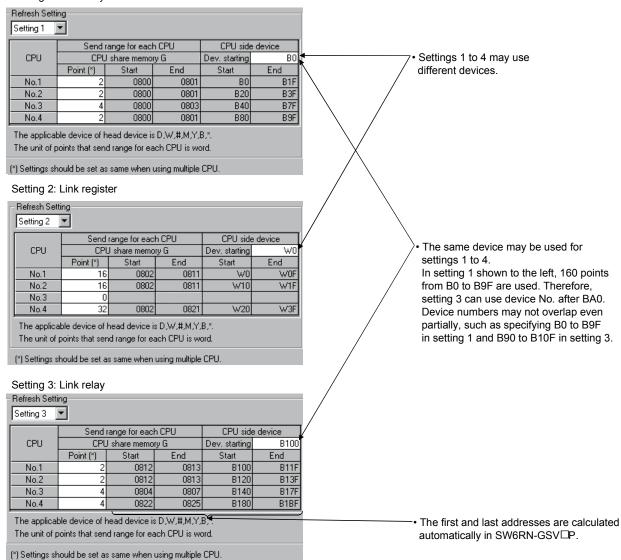
The CPU for which the number of transmitting points is set only in setting 1 use the last address of shared CPU memory in setting 1. (In the example below, CPU No.3 is using the last address in setting 1).

5) Set the same number of transmitting points for all CPUs in the Multiple CPU system.

If any of the CPUs has a different number of transmitting points, a PARAMETER ERROR will be occurred.

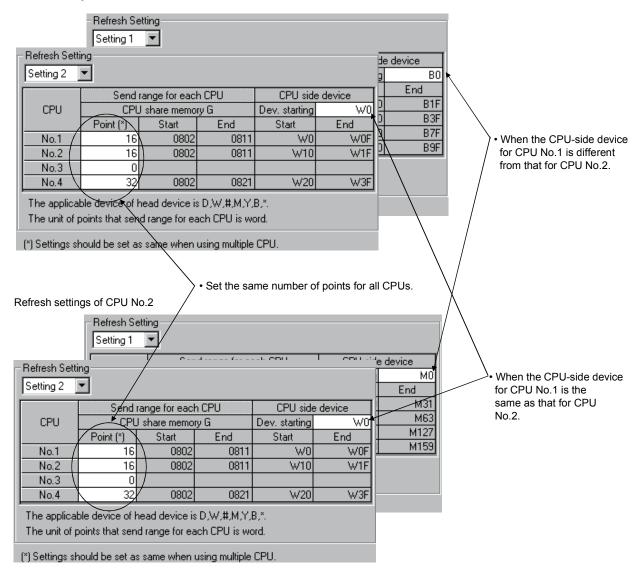
(c) CPU-side device

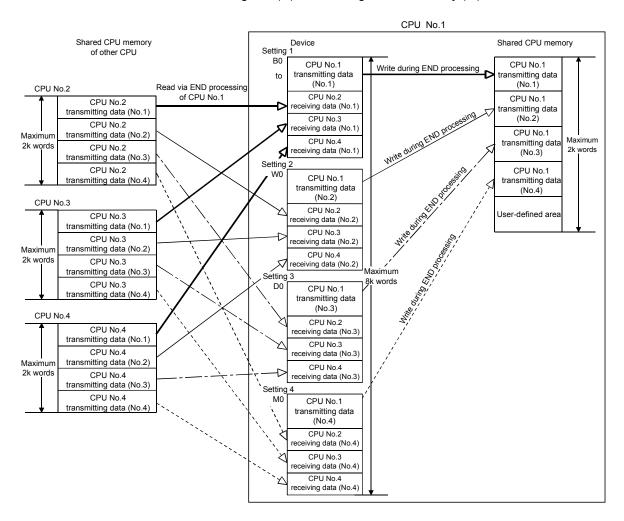
The following devices can be used for automatic refresh. (Other devices cannot be set in SW6RN-GSV□P.)


Settable device	Restriction
Data resister (D) Link resister (W) Motion resister (#)	None
Link relay (B) Internal relay (M) Output (Y)	 Specify 0 or a multiple of 16 as the first No One transmitting point occupies 16 points.

 As for the CPU-side devices, the devices corresponding to the total number of transmitting points set for CPU No.1 to 4 in one setting range are used in succession starting from the device No. to be set.
 Set a device number that ensures enough devices for the set transmitting points.

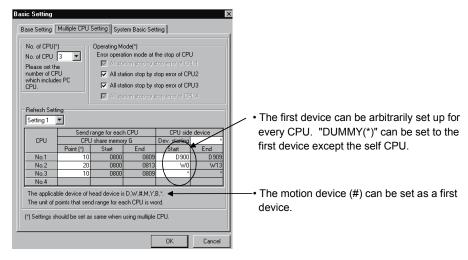
When bit device is specified for the CPU-side device, the number of transmitting points is multiplied by 16.


- 2) Set the CPU-side device as follows.
 - Settings 1 to 4 may use different devices.
 If the device ranges do not overlap, the same device may be used for settings 1 to 4.

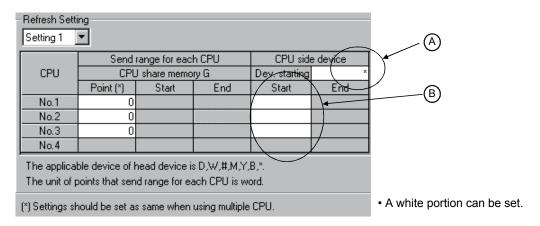


The devices in settings 1 to 4 can be set individually for each CPU.
 For example, you may set link relay for CPU No.1 and internal relay for CPU No.2.

Refresh settings of CPU No.1



3) The block diagram below illustrates the automatic refresh operation over four ranges of setting 1: link relay (B), setting 2: link register (W), setting 3: data register (D), and setting 4: internal relay (M).

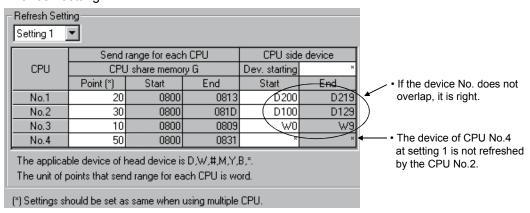

- (3) Automatic refresh settings 2 (Manual setting)
 Refer to Section "1.3.4(4)" for the applicable version of Motion CPU and the software.
 - (a) When the automatic refresh setting (Manual setting) of Motion CPU is used, there are the following advantages.
 - 1) A device setting which executes the automatic refresh setting between the PLC CPU and Motion CPU can be performed flexibly.
 - 2) Because it is made not to execute the automatic refresh setting between the Motion CPU using a dummy setting, it is not necessary to use the user device for the automatic refresh vainly, and a main cycle can also be shortened.
 - 3) It is possible to execute the automatic refresh of Motion device (#) to the PLC CPU directly. Similarly, it is possible to execute the automatic refresh for data of the PLC CPU to the Motion device (#) directly.

Refer to the "QCPU User's Manual (Function Explanation/Program Fundamentals)" about the setting for the PLC CPU.

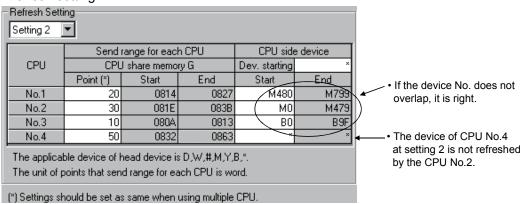
- (b) Setting selection/send range (refresh range) for each CPU
 - The refresh setting of four ranges can be set by setting selection.
 For example, ON/OFF data may be refreshed using bit-device setting, while other data may be refreshed word device setting.
 - 2) The number of points in the shared CPU memory is set in units of 2 points (2 words) is set in the send range for each CPU. (2 points if word device is specified for the CPU-side device, or 32 points if bit device is specified.)
 - Data of the CPU for which "0" is set as the number of points representing the transmitting range of the CPU may not be refreshed.
 - 3) The maximum number of transmitting points combining all four ranges is 2k words per CPU (PLC CPU or Motion CPU) or 8k points (8k words) for all CPUs.

- 4) If "*" is set as the first device setting column A of each automatic refresh setting, the first device for every CPU can be arbitrarily set up by the user in the column of B.
- 5) "DUMMY" setting can be set to the first device column B of the automatic refresh setting. ("DUMMY" setting cannot be set to the self CPU.) "DUMMY" setting should set "*" as the first devise column B. The self CPU does not execute the automatic refresh to the other CPU which carried out "DUMMY (*)" setting.

6) Set the same number of transmitting points for all CPUs in the Multiple CPU system.

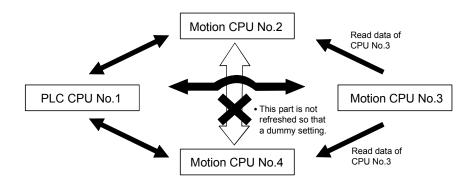

If any of the CPUs has a different number of transmitting points, a PARAMETER ERROR will be occurred.

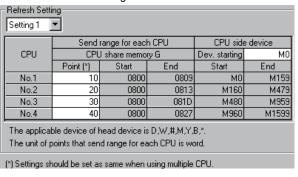
(c) CPU-side device


The following devices can be used for automatic refresh. (Other devices cannot be set in SW6RN-GSV□P.)

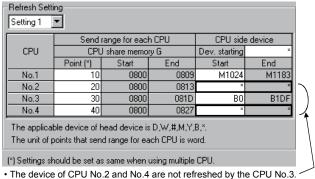
Settable device	Restriction
Data resister (D) Link resister (W)	None
Motion resister (#)	
Link relay (B) Internal relay (M) Output (Y)	Specify 0 or a multiple of 16 as the first NoOne transmitting point occupies 16 points.

• Self CPU (CPU No.2) Refresh setting 1


Self CPU (CPU No.2) Refresh setting 2


[Dummy setting]

Usually, the automatic refresh setting is executed between PLC CPU and Motion CPU for the instructions to each Motion CPU and the monitor of a state by the PLC CPU at the time of operation. However, the automatic refresh is not necessary between each Motion CPU. In this case, because it is made not to execute the automatic refresh setting between the Motion CPU using a dummy setting, it is not necessary to use the user device for the automatic refresh vainly, and a main cycle can also be shortened.


Example of the automatic refresh setting using the "Dummy setting" is as follows.

• PLC CPU (CPU No.1) Automatic refresh setting 1

• Motion CPU (CPU No.3) Automatic refresh setting 1

 Motion CPU (CPU No.2) Automatic refresh setting 1

No.2 20 0800 0813 M0 M3 No.3 30 0800 081D B0 B1D No.4 40 0800 0827 *	Send range for each CPU CPU side device						
No.1 10 0800 0809 M1024 M118 No.2 20 0800 0813 M0 M3 No.3 30 0800 081D B0 B1E No.4 40 0800 0827 *	CPU CPU share memory G Dev. starting *						
No.2 20 0800 0813 M0 M3 No.3 30 0800 081D B0 B1D No.4 40 0800 0827 *	Point (*) Start End Start End						
No.3 30 0800 081D 80 B10 No.4 40 0800 0827 *	No.1 10 0800 0809 M1024 M1183						
No.4 40 0800 0827 *							
	No.3 30 0800 081D B0 B1DF						
	No.4 40 0800 0827 × ×						
The applicable device of head device is D,W,#,M,Y,B,*. The unit of points that send range for each CPU is word.							

• Motion CPU (CPU No.4) Automatic refresh setting 1

Refresh Setting						
Setting 1 🔻						
Send range for each CPU CPU side device						
CPU CPU share memory G Dev. starting *						
Point (*) Start End Start End						
No.1 10 0800 0809 M1024 M1183						
No.2 20 0800 0813 × ×						
No.3 30 0800 081D B0 B1DF						
No.4 40 0800 0827 M0 M639						
The applicable device of head device is D,W,#,M,Y,B,*. The unit of points that send range for each CPU is word.						
(*) Settings s	hould be set as	same when	using multiple	CPU.		
_	The device o	f CDLL No.) is not refer	aabad bu tha	CDLL No. 4	

The device of CPU No.2 is not refreshed by the CPU No.4.

Although the example of a setting is the case of the automatic refresh setting 1, the automatic refresh setting 2 - 4 can be also set similarly.

(4) The layout example of automatic refresh setting The layout example of automatic refresh when Read/Write does a Motion dedicated device in the Motion CPU with PLC CPU is shown below.

(a) SV13

Overall configuration

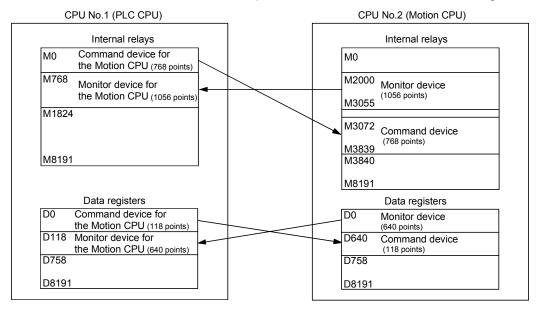

Table of the internal relays

Table of the Data registers

'	Table of the internal relays	¬	The Data registers
Device No.	Application	Device No.	Application
MO	User device	D0	Axis monitor device
to	(2000 points)	to	(20 points \times 32 axes)
M2000	Common device	D640	Control change register
to	(320 points)	to	(2 points \times 32 axes)
M2320	Special relay allocated device (Status)	D704	Common device (Common signal)
to	(80 points)	to	(54 points)
M2400	Axis status	D758	Common device (Monitor)
to	(20 points $ imes$ 32 axes)	to	(42 points)
M3040		D800	
to	Unusable		
M3072	Common device		
to	(Command signal) (64 points)		
M3136	Special relay allocated device (Command signal)		
to	(64 points)		
M3200	Axis command signal		
to	(20 points $ imes$ 32 axes)	to	
М3840			User device (7392 points)
to	User device (4352 points)		
M8191		D8191	

1) PLC CPU (1 module) + Motion CPU (1 module)

The outline operation and the automatic refresh setting are as follows.

· Automatic refresh setting 1

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

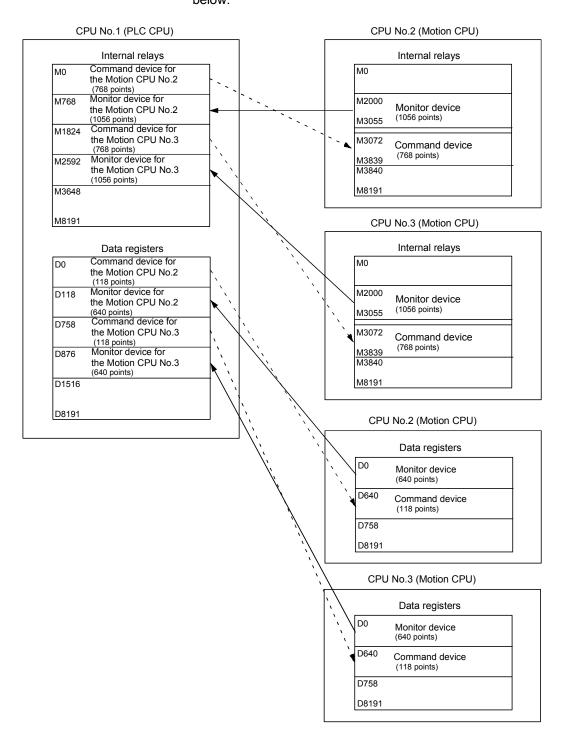
CPU	Send range for each CPU			CPU side of	device
	CPU share memory G			Dev. starting	MO
	Point	Start	End	Start	End
No.1	48			MO	M767
No.2	66			M768	M1823
No.3					
No.4					

	Send ra	nge for ea	nch CPU	CPU side o	device
CPU	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	48			M3072	M3839
No.2	66			M2000	M3055
No.3					
No.4					

· Automatic refresh setting 2

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)


CPU	Send range for each CPU			CPU side device		
	CPU share memory G			Dev. starting	D0	
	Point	Start	End	Start	End	
No.1	118			D0	D117	
No.2	640			D118	D757	
No.3						
No.4						

CPU	Send rai	nge for ea	ch CPU	CPU side o	device
	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	118			D640	D757
No.1 No.2	118 640			D640 D0	D757 D639

POINT

Although it has set up so that 32 axes may be assigned in the above assignment example, reduce the number of assignment automatic refresh points a part for the number of axes to be used.

2) PLC CPU (1 module) + Motion CPU (2 modules) The outline operation and the automatic refresh setting are shown below.

· Automatic refresh setting 1

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side	device
CPU	CPU s	share men	nory G	Dev. starting	MO
	Point	Start	End	Start	End
No.1	48			MO	M767
No.2	66			M768	M1823
No.3	0				
No.4					

CPU	Send ra	nge for ea	ach CPU	CPU side o	device
	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	48			M3072	M3839
No.2	66			M2000	M3055
No.3	0				
No.4					

· Automatic refresh setting 2

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

CPU	Send range for each CPU			CPU side	device
	CPU share memory G			Dev. Starting	D0
	Point	Start	End	Start	End
No.1	118			D0	D117
No.2	640			D118	D757
No.3	0				
No.4					

CPU	Send rai	nge for ea	ach CPU	CPU side o	device
	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	118			D640	D757
No.2	640			D0	D639
No.3	0				
No.4					

· Automatic refresh setting 3

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side of	device
CPU	CPU s	share men	nory G	Dev. Starting	M1824
	Point	Start	End	Start	End
No.1	48			M1824	M2591
No.2	0				
No.3	66			M2592	M3647
No.4					

	Send rai	nge for ea	nch CPU	CPU side o	device
CPU	CPU share memory G			Dev. starting	*
	Point	Start	End	Start	End
No.1	48			*	*
No.2	0				
No.3	66			*	*
No.4					

(Note) : A dummy setting is made so that an excessive device may not be refreshed in the Motion CPU No.2.

· Automatic refresh setting 4

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	. ,							
	Send range for each CPU			CPU side device				
CPU	CPU s	share men	nory G	Dev. starting	D758			
	Point	Start	End	Start	End			
No.1	118			D758	D875			
No.2	0							
No.3	640			D876	D1515			
No.4								

	Send range for each CPU			CPU side o	device
CPU	CPU share memory G			Dev. starting	*
	Point	Start	End	Start	End
No.1	118			*	*
No.2	0				
No.3	640			*	*
No.4					

(Note): A dummy setting is made so that an excessive device may not be refreshed in the Motion CPU No.2.

Automatic refresh setting 1 Motion CPU (CPU No.3)

	Send range for each CPU			CPU side device	
CPU	CPU s	share memory G		Dev. starting	*
	Point	Start	End	Start	End
No.1	48			*	*
No.2	66			*	*
No.3	0				
No.4					

(Note) : A dummy setting is made so that an excessive device may not be refreshed in the Motion CPU No.3.

Automatic refresh setting 2 Motion CPU (CPU No.3)

		,			
	Send range for each CPU			CPU side device	
CPU	CPU CPU s		nory G	Dev. starting	*
	Point	Point Start End		Start	End
No.1	118			*	*
No.2	640			*	*
No.3	0				
No.4					

(Note) : A dummy setting is made so that an excessive device may not be refreshed in the Motion CPU No.3.

Automatic refresh setting 3 Motion CPU (CPU No.3)

	Send range for each CPU			CPU side device	
CPU	CPU CPU share memory G		Dev. starting	*	
	Point	Start	End	Start	End
No.1	48			M3072	M3839
No.2	0				
No.3	66			M2000	M3055
No.4					

Automatic refresh setting 4 Motion CPU (CPU No.3)

	Send range for each CPU			CPU side device	
CPU	CPU share memory G		Dev. starting	*	
	Point	Start	End	Start	End
No.1	118			D640	D757
No.2	0				
No.3	640			D0	D639
No.4					

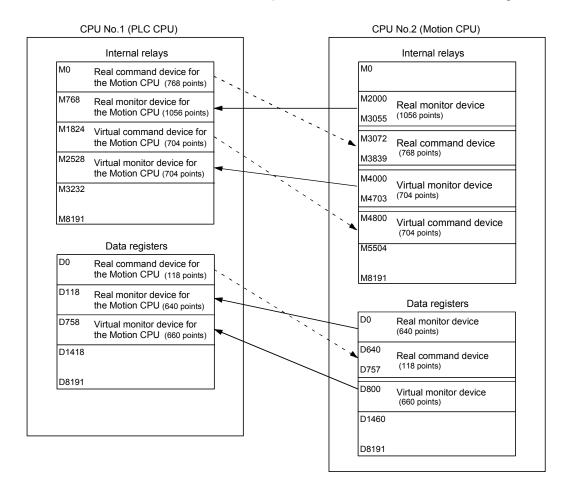
POINT

In the case of the combination "PLC CPU (1 module) + Motion CPU (3 modules)" with SV13, make all the devices of all the CPUs refresh as mentioned above because the setting that Read/Write is made of the PLC CPU cannot be executed.

(b) SV22

Overall configuration

Table of the internal relays


Table of the Data registers

Device No.	Application
M0	User device
to	(2000 points)
M2000	Common device
to	(320 points)
M2320	Special relay allocated device
to	(Status)
	(64 points)
M2400	Axis status
to	(20 points $ imes$ 32 axes)
M3040	Unusable
to	Chadale
M3072	Common device
to	(Command signal)
	(64 points)
M3136	Special relay allocated device
to	(Command signal)
M3200	(64 points)
	Axis command signal (20 points \times 32 axes)
to M3840	(20 points × 32 axes)
to	Unusable
M4000	Virtual servomotor axis status
to	(20 points \times 32 axes)
	(Mechanical system setting axis only)
M4640	Synchronous encoder axis status
to	(4 points $ imes$ 12 axes)
M4688	Llauachla
to	Unusable
M4800	Virtual servomotor axis command
to	signal
	(20 points $ imes$ 32 axes)
	(Mechanical system setting axis only)
M5440	Synchronous encoder axis
to	command signal
N45400	(4 points × 12 axes)
M5488	Cam axis command signal
to	(1 points \times 32 axes) (Mechanical system setting axis only)
M5520	Soothing clutch complete signal
M5520 to	(2 points \times 32 axes)
M5584	(2 points // 02 dives)
to	Unusable
M5600	
to	User device)
M8191	(2592 points)
	1

D0 Axis monitor device to (20 points × 32 axes) D640 Control change register to (2 points × 32 axes) D704 Common device to (Command signal) (54 points) Common device to (Monitor) (42 points) Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 User device (6632 points)	$\begin{array}{c} \text{D0} \\ \text{to} \\ \text{(20 points} \times 32 \text{ axes)} \\ \text{D640} \\ \text{Control change register} \\ \text{(b)} \\ \text{(c)} \\ $	Device No.	Application
$\begin{array}{c} \text{to} & (20 \text{points} \times 32 \text{axes}) \\ \hline \text{D640} & \text{Control change register} \\ \text{to} & (2 \text{points} \times 32 \text{axes}) \\ \hline \text{D704} & \text{Common device} \\ \text{to} & (\text{Command signal}) \\ & (54 \text{points}) \\ \hline \text{D758} & \text{Common device} \\ \text{to} & (\text{Monitor}) \\ & (42 \text{points}) \\ \hline \text{D800} & \text{Virtual servomotor axis monitor} \\ \text{to} & \text{device} \\ & (10 \text{points} \times 32 \text{axes}) \\ & (\text{Mechanical system setting axis only}) \\ \hline \text{D1120} & \text{Synchronous encoder axis monitor} \\ \text{to} & \text{device} \\ & (10 \text{points} \times 12 \text{axes}) \\ \hline \text{D1240} & \text{Cam axis monitor device} \\ \text{to} & (10 \text{points} \times 32 \text{axes}) \\ \hline \text{D1560} \\ \hline \\ \hline \end{array}$	to (20 points \times 32 axes) D640 Control change register to (2 points \times 32 axes) D704 Common device (Command signal) (54 points) D758 Common device (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points \times 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor device (10 points \times 12 axes) D1240 Cam axis monitor device to (10 points \times 32 axes) D1560 User device		
to (2 points × 32 axes) D704	to	to	(20 points $ imes$ 32 axes)
D704 Common device to (Command signal) (54 points) Common device to (Monitor) (42 points) D800 Virtual servomotor axis monitor device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 User device	D704 to (Command signal) (54 points) D758 Common device (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	D640	Control change register
to (Command signal) (54 points) D758 Common device (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to (Command signal) (54 points) D758 Common device (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to	(2 points $ imes$ 32 axes)
(54 points)	D758 Common device to (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	D704	Common device
to (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to	(Command signal)
to $ (Monitor) \\ (42 \text{ points}) \\ D800 \\ Virtual servomotor axis monitor \\ device \\ (10 \text{ points} \times 32 \text{ axes}) \\ (Mechanical system setting axis only) \\ D1120 \\ Synchronous encoder axis monitor \\ device \\ (10 \text{ points} \times 12 \text{ axes}) \\ D1240 \\ Cam axis monitor device \\ to \\ (10 \text{ points} \times 32 \text{ axes}) \\ D1560 \\ \\ to \\ User device \\ \\ \\ User device \\ \\ \\ User device \\ \\ \\ \\ User device \\ \\ \\ \\ \\ \\ \\ \\ \\ $	to (Monitor) (42 points) D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device		(54 points)
(42 points) D800 Virtual servomotor axis monitor device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor device (10 points × 12 axes) D1240 Cam axis monitor device (10 points × 32 axes) D1560 to User device	D800 Virtual servomotor axis monitor to device (10 points × 32 axes) (Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	D758	Common device
D800 Virtual servomotor axis monitor to device $(10 \text{ points} \times 32 \text{ axes})$ $(\text{Mechanical system setting axis only})$ D1120 Synchronous encoder axis monitor device $(10 \text{ points} \times 12 \text{ axes})$ D1240 Cam axis monitor device $(10 \text{ points} \times 32 \text{ axes})$ D1560 to User device	D800 Virtual servomotor axis monitor to device $(10 \text{ points} \times 32 \text{ axes})$ $(\text{Mechanical system setting axis only})$ D1120 Synchronous encoder axis monitor to device $(10 \text{ points} \times 12 \text{ axes})$ D1240 Cam axis monitor device $(10 \text{ points} \times 32 \text{ axes})$ D1560 to User device	to	*
to $ \begin{array}{c} \text{device} \\ \text{(10 points} \times 32 \text{ axes)} \\ \text{(Mechanical system setting axis only)} \\ \text{D1120} \qquad \text{Synchronous encoder axis monitor} \\ \text{to} \qquad \text{device} \\ \text{(10 points} \times 12 \text{ axes)} \\ \text{D1240} \qquad \text{Cam axis monitor device} \\ \text{to} \qquad \text{(10 points} \times 32 \text{ axes)} \\ \text{D1560} \\ \\ \text{to} \qquad \text{User device} \\ \end{array} $	to $\begin{array}{c} \text{device} \\ \text{(10 points} \times 32 \text{ axes)} \\ \text{(Mechanical system setting axis only)} \\ \text{D1120} \qquad & \text{Synchronous encoder axis monitor} \\ \text{to} \qquad & \text{device} \\ \text{(10 points} \times 12 \text{ axes)} \\ \text{D1240} \qquad & \text{Cam axis monitor device} \\ \text{to} \qquad & \text{(10 points} \times 32 \text{ axes)} \\ \text{D1560} \\ \\ \text{to} \qquad & \text{User device} \\ \end{array}$		(42 points)
		D800	
(Mechanical system setting axis only) D1120 Synchronous encoder axis monitor device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	(Mechanical system setting axis only) D1120 Synchronous encoder axis monitor to device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to	
D1120 to	D1120 Synchronous encoder axis monitor device (10 points × 12 axes) D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device		
to	to		
	(10 points × 12 axes) D1240		-
D1240	D1240 Cam axis monitor device to (10 points × 32 axes) D1560 to User device	to	
to (10 points × 32 axes) D1560 to User device	to (10 points × 32 axes) D1560 to User device		
to User device	to User device		
to User device	to User device		(10 points × 32 axes)
		to	

1) PLC CPU (1 module) + Motion CPU (1 module)

The outline operation and the automatic refresh setting are as follows.

· Automatic refresh setting 1

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side device	
CPU	CPU s	share men	nory G	Dev. starting	МО
	Point	Start	End	Start	End
No.1	48			MO	M767
No.2	66			M768	M1823
No.3					
No.4					

	Send range for each CPU			CPU side device	
CPU	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	48			M3072	M3839
No.1 No.2	48 66			M3072 M2000	M3839 M3055

Automatic refresh setting 2

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side	device
CPU	CPU share memory G			Dev. Starting	D0
	Point	Start	End	Start	End
No.1	118			D0	D117
No.2	640			D118	D757
No.3					
No.4					

	Send range for each CPU			CPU side device	
CPU	CPU share memory G			Dev. starting	*
	Point	Start	End	Start	End
No.1	118			D640	D757
No.2	640			D0	D639
No.3					
No.4					

· Automatic refresh setting 3

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side device	
CPU	CPU share memory G			Dev. Starting	M1824
	Point	Start	End	Start	End
No.1	44			M1824	M2527
No.2	44			M2528	M3231
No.3					
No.4					

	Send range for each CPU			CPU side device	
CPU	CPU s	hare men	nory G	Dev. starting	*
	Point	Start	End	Start	End
No.1	44			M4800	M5503
No.2	44			M4000	M4703
No.3					
No.4					

· Automatic refresh setting 4

PLC CPU (CPU No.1)

Motion CPU (CPU No.2)

	Send range for each CPU			CPU side device	
CPU	CPU share memory G			Dev. starting	D758
	Point	Start	End	Start	End
No.1	0				
No.2	660			D758	D1417
No.3					
No.4					

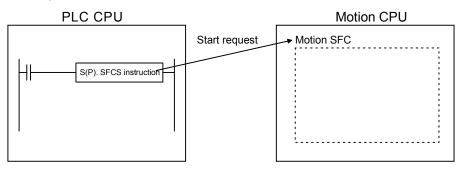
	Send range for each CPU			CPU side device	
CPU	CPU share memory G			Dev. starting	*
	Point	Start	End	Start	End
No.1	0				
No.2	660			D800	D1459
No.3					
No.4					

POINT

In the case of the combination "PLC CPU (1 module) + Motion CPU (2 modules)" with SV22, make all the devices of all the CPUs refresh as mentioned above because the setting that Read/Write is made of the PLC CPU cannot be executed.

3.2 Control Instruction from the PLC CPU to The Motion CPU (Motion dedicated instructions)

Control can be instructed from the PLC CPU to the Motion CPU using the Motion dedicated PLC instructions listed in the table below.


Refer to Chapter "5 MOTION DEDICATED PLC INSTRUCTIONS" for the details of each instruction.

(Control may not be instructed from the Motion CPU to another Motion CPU.)

Instruction name	Description
S(P).SFCS	Start request of the Motion SFC program (Program No. may be specified.)
S(P).SVST	Start request of the specified servo program
S(P).CHGA	Current value change request of the specified axis
S(P).CHGV	Speed change request of the specified axis
S(P).CHGT	Torque control value change request of the specified axis
S(P).GINT	Execute request of an event task to the other CPU (Motion CPU)

By using the S(P). SFCS instruction of the Motion dedicated instruction, the Motion SFC of the Motion CPU from the PLC CPU can be started.

<Example>

POINT

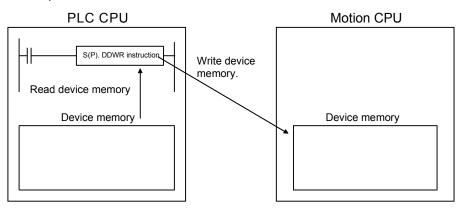
One PLC CPU can execute a total of up to 32 "Motion dedicated instructions" and "dedicated instructions excluding the S(P). GINT" simultaneously.

When Motion dedicated instructions and dedicated instructions excluding the "S(P). GINT" are executed simultaneously, the instructions will be processed in the order received.

If the command which has not completed processing becomes 33 or more, an OPERATION ERROR (error code: 4107) will be occurred.

3.3 Reading/Writing Device Data

Device data can be written or read to/from the Motion CPU by the PLC CPU using the dedicated instructions listed in the table below.


Refer to Chapter 5 "MOTION DEDICATED PLC INSTRUCTIONS" for the details of each instruction.

(Data cannot be written or read to/from the PLC CPU by another PLC CPU, to/from the PLC CPU by the Motion CPU, or to/from a Motion CPU by another Motion CPU.)

	Instruction name	Description
	S(D) DDWD	Write a device data of the self CPU (PLC CPU) to a device of the other
	S(P).DDWR	CPU (Motion CPU).
	S(P).DDRD	Read a device data of other CPU (Motion CPU) to a device of the self
		CPU (PLC CPU).

For example, by using the S(P). DDWR dedicated instruction, the device data of the PLC CPU can be written to the device data of the Motion CPU.

<Example>

POINT

the order received.

- (1) One PLC CPU can execute a total of up to 32 "Motion dedicated instructions" and "dedicated instructions excluding the S(P). GINT" simultaneously. When Motion dedicated instructions and dedicated instructions excluding the S(P). GINT are executed simultaneously, the instructions will be processed in
 - If the command which has not completed processing becomes 33 or more, an OPERATION ERROR (error code: 4107) will be occurred.
- (2) Data refresh via the S(P). DDRD/S(P). DDWR is not synchronized with data refresh via the automatic refresh function of shared CPU memory. Do not issue S(P). DDRD/S(P). DDWR instructions to the devices whose data in shared CPU memory is being refreshed.

3.4 Shared CPU Memory

Shared CPU memory is used to transfer data between the CPUs in the Multiple CPU system and has a capacity of 4096 words from 0H to FFFH.

Shared CPU memory has four areas: "self CPU operation data area", "system area", "automatic refresh area" and "user-defined area."

When the automatic refresh function of shared CPU memory is set, the area corresponding to the number of automatic refresh points starting from 800H is used as the automatic refresh area.

The user-defined area begins from the address immediately next to the last address of the automatic refresh area.

If the number of automatic refresh points is 18 (12H points), the area from 800H to 811H becomes the automatic refresh area and the area after 812H becomes the user-defined area.

The diagram below shows the structure of shared CPU memory and accessibility from a PLC program.

		Self	CPU	Other	· CPU
	Shared CPU memory	Write (Note-1)	Read	Write	Read (Note-2)
0H to 1FFH	Self CPU operation data area	Not allowed	Not allowed	Not allowed	Allowed
200H to 7FFH	System area	Not allowed	Not allowed	Not allowed	Allowed
800H	Automatic refresh area	Not allowed	Not allowed	Not allowed	Not allowed
to FFFH	User-defined area	Allowed	Not allowed	Not allowed	Allowed

REMARK

- (Note-1): Use the S. TO instruction to write to the user-defined area of the self CPU in the PLC CPU.
 - Use the MULTW instruction to write to the user-defined area of the self CPU in the PLC CPU. (Refer to Section 1.3.4(4) for the conditions which can use the MULTW instruction.)
- (Note-2): Use the FROM instruction/intelligent function module device (U□\G□) to read the shared memory of the Motion CPU from the PLC CPU.

 Use the MULTR instruction to read the shared memory of other CPU in the Motion CPU. (Refer to Section 1.3.4(4) for the conditions which can use the MULTR instruction.)

(1) Self CPU operation data area (0H to 1FFH)

(a) The following data of the self CPU are stored in the Multiple CPU system,

Table 3.1 Table of Contents Stored in the Self CPU Operation Data Area

Shared memory address	Name	Description	Detailed explanation (Note)	Corresponding special resister
ОН	Data available/not "Data available/not available flag		This area is used to check whether data is stored or not in the self CPU operation data area (1H to 1FH) of the self CPU. • 0: Data is not stored in the self CPU operation data area. • 1: Data is stored in the self CPU operation data area.	_
1H	Diagnosis error	Diagnosis error number	The error number of an error generated during diagnosis is stored as a BIN code.	D9008
2H			The year and month when the error number was stored in address 1H of shared CPU memory is stored in 2-digit BCD code.	D9010
3H Diagnosis-error occurrence time	Diagnosis-error occurrence time	The date and hour when the error number was stored in address 1H of shared CPU memory is stored in 2-digit BCD code.	D9011	
		The minutes and seconds when the error number was stored in address 1H of shared CPU memory is stored in 2-digit BCD code.	D9012	
5H	Error-data category code	Error-data category code	Category codes indicating the nature of the stored common error data and individual error data are stored.	D9013
6H	Error data	Error data	Common data corresponding to the error number of an error generated during diagnosis is stored.	D9014
7H to 1CH	Not used	_	Not used	_
1DH	Switch status	CPU switch status	The switch status of the CPU is stored.	D9200
1EH	LED status	CPU-LED status	The bit pattern of the CPU LED is stored	D9201
1FH	CPU operation status	CPU operation status	The operation status of the CPU is stored.	D9015

(Note): Refer to the applicable special register for details.

- (b) The self CPU operation data area is refreshed every time the applicable register has been changed.
 - However, the refresh timing may be delayed by up to the main cycle time. (It updates using idle time during motion control. The maximum main cycle time: several milliseconds to several hundred milliseconds).
- (c) The data of the self CPU operation data area can be read from the PLC CPU of the other CPU by the FROM instruction.
 However, since there is a delay in data update, use the data that has been read as an object for monitoring only.
- (d) Self CPU operation data area used by Motion dedicated PLC instruction (30H to 33H)

The complete status of the to self CPU high speed interrupt accept flag from CPUn is stored in the following address.

Table 3.2 Self CPU Operation Data Area used by the Motion Dedicated PLC Instruction

Shared		
memory	Name	Description
address		
30H(48)	To self CPU high speed interrupt accept flag from CPU1	This area is used to check whether to self CPU high speed interrupt accept flag
31H(49)	To self CPU high speed interrupt accept flag from CPU2	from CPUn can be accepted or not.
32H(50)	To self CPU high speed interrupt accept flag from CPU3	0: To self CPU high speed interrupt accept flag from CPUn accept usable.
33H(51)	To self CPU high speed interrupt accept flag from CPU4	1: To self CPU high speed interrupt accept flag from CPUn accept disable.

(2) System area (204H to 20DH)

This area is used by the operating systems (OS) of the PLC CPU/Motion CPU. OS uses this area when executing dedicated Multiple CPU communication instructions.

System area used by Motion dedicated PLC instruction (204H to 20DH)
 The complete status is stored in the following.

Table 3.3 Table of System Area used by the Motion Dedicated PLC Instruction

Shared memory address	Name	Description		
204H(516)	Start accept flag (Axis1 to 16)	The start accept flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): J1 to J32/Q172CPU(N): J1 to J8.) OFF: Start accept flag usable ON: Start accept flag disable		
205H(517)	Start accept flag (Axis17 to 32)	b15 b1 b0 204H(516) address J16		
206H(518)	Speed changing flag (Axis1 to 16)	The speed changing flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): J1 to J32/ Q172CPU(N): J1 to J8.) OFF: Start accept usable ON: Start accept disable		
207H(519)	Speed changing flag (Axis17 to 32)	206H(518) address J16 J2 J1 207H(519) address J32 J17		
208H(520)	Synchronous encoder current value changing flag (Axis1 to 12) (Note-1)	The synchronous encoder current value change flag is stored by the 1 to 16 axis, each bit. (As for a bit's actually being set Q173CPU(N): E1 to E12/Q172CPU(N): E1 to E8.) OFF: Start accept usable ON: Start accept disable b15 b1 b0 208H(520) address E16		
20CH(524)	Cam shaft within-one-revolution current value changing flag (Axis1 to 16) (Note-1)	The cam shaft within-one-revolution current value changing flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): C1 to C32/Q172CPU(N): C1 to C8.) OFF: Start accept usable		
20DH(525)	Cam shaft within-one-revolution current value changing flag (Axis17 to 32) (Note-1)	ON : Start accept disable b15		

(Note-1): Usable in SV22.

(3) Automatic refresh area

This area is used at the automatic refresh of the Multiple CPU system. This area cannot be written using S. TO instruction/read using FROM instruction of the PLC CPU and written using MULTW instruction/read using MULTR instruction of the Motion CPU.

(4) User-defined area

This area is used for the communication among each CPU in the Multiple CPU system using FROM/S. TO instructions and the intelligent function module devices of the PLC CPU. (Among each CPU communicates using MULTR instruction or MULTW instruction of the operating control program in the Motion CPU.)

Refer to the Section 7.13.6 to 7.13.7, for MULTR instruction or MULTW instruction.

After point set in the automatic refresh area is used.

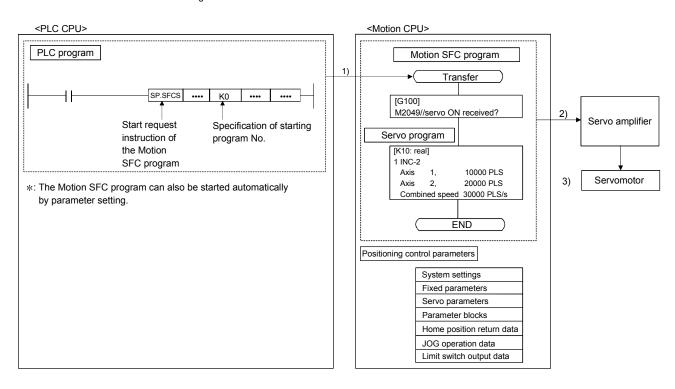
(If the automatic refresh function is not executed, the area from 800H to FFFH can be used as a user-defined area.)

3 COMMUNICATION BETWEEN THE PLC CPU AND THE MOTION CPU IN THE MULTIPLE CPU SYSTEM

MEMO		

4. STRUCTURE OF THE MOTION CPU PROGRAM

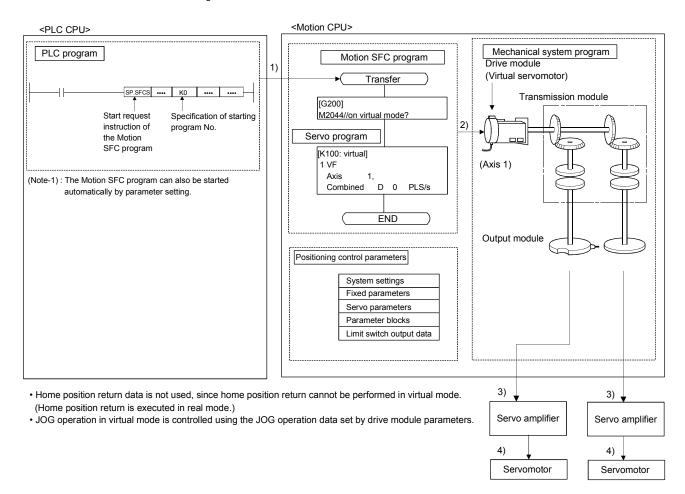
Motion CPU programs is created in the Motion SFC of flowchart format. The motion control of servomotors is performed using the real-mode servo programs specified by motion-control steps in a Motion SFC program in SV13/SV22 real mode. Virtual servomotors in a mechanical system program are controlled using the virtual mode servo programs specified by motion-control steps so as to enable synchronous control in SV22 virtual mode. Refer to the documents below for the details of Motion SFC programs, motion control in real mode, and motion control in virtual mode.


Item	Reference manual
Motion SFC program	Section 6 in this manual
Motion control in SV13/SV22 real mode	Q173CPU(N)/Q172CPU(N) Motion controller
(Servo program)	(SV13/SV22) Programming Manual (REAL MODE)
Motion control in SV22 virtual mode	Q173CPU(N)/Q172CPU(N) Motion controller (SV22)
(Mechanical system program)	Programming Manual (VIRTUAL MODE)

 \downarrow

4.1 Motion Control in SV13/SV22 Real Mode

- (1) System with servomotor is controlled directly using the servo program in (SV13/SV22) real mode.
- (2) Setting of the positioning parameter and creation of the servo program/ Motion SFC program are required.
- (3) The procedure of positioning control is shown below:
 - Motion SFC program is requested to start using the S(P).SFCS instruction of the PLC program.
 (Motion SFC program can also be started automatically by parameter setting.)
 - Execute the positioning control using the specified the Motion SFC program. (Output to the servo amplifier)
 - 3) The servomotor is controlled.


Program structure in SV13/SV22 real mode

4.2 Motion Control in SV22 Virtual Mode

- Software-based synchronous control is performed using the mechanical system program constructed by virtual main shaft and mechanical module in (SV22) virtual mode.
- (2) Mechanical system programs is required in addition to the positioning parameter, servo program/Motion SFC program used in real mode.
- (3) The procedure of positioning control in virtual model is shown below:
 - Motion SFC program for virtual mode is requested to start using the S(P).SFCS instruction of the PLC program.
 (Motion SFC program can also be started automatically by parameter setting.)
 - 2) The virtual servomotor in the mechanical system program is started.
 - 3) Output the operation result obtained through the transmission module to the servo amplifier set as the output module.
 - 4) The servomotor is controlled.

Program structure in SV22 virtual mode

MEMO		

5. MOTION DEDICATED PLC INSTRUCTION

5.1 Motion Dedicated PLC Instruction

(1) The Motion dedicated PLC instruction which can be executed toward the Motion CPU which installed a SV13/SV22 operating system software for the Motion SFC is shown below.

Instruction	Description
S(P).SFCS	Start request of the Motion SFC program(Program No. may be specified.)
S(P).SVST	Start request of the specified servo program
S(P).CHGA	Current value change request of the specified axis
S(P).CHGV	Speed change request of the specified axis
S(P).CHGT	Torque control value change request of the specified axis
S(P).DDWR	Write from the PLC CPU to the Motion CPU
S(P).DDRD	Reads from the devices of the Motion CPU
S(P).GINT	Execute request of an event task of Motion SFC program

(Note): As for the details of each instruction, it explains after the next section.

5.1.1 Restriction item of the Motion dedicated PLC instruction

- To self CPU high speed interrupt accept flag from CPUn.
 Common precautions of the Motion dedicated PLC instruction as shown below.
 - (a) To self CPU high speed interrupt accept flag from CPUn is shown in the following table.

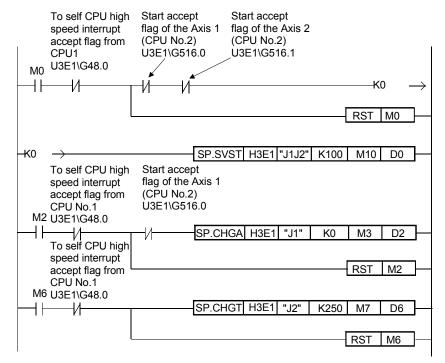
To self CPU high speed interrupt accept flag from CPUn is "No operation" even if the instruction is executed when it is cannot be accepted.

When the Motion dedicated PLC instruction is accepted in the Motion CPU, to self CPU high speed interrupt accept flag from CPUn of the self CPU (Motion CPU) shared CPU memory cannot be accepted and processing toward the instruction for requirement.

When processing is completed and it becomes the condition that it has an instruction accepted, to self CPU high speed interrupt accept flag from CPUn can be accepted.

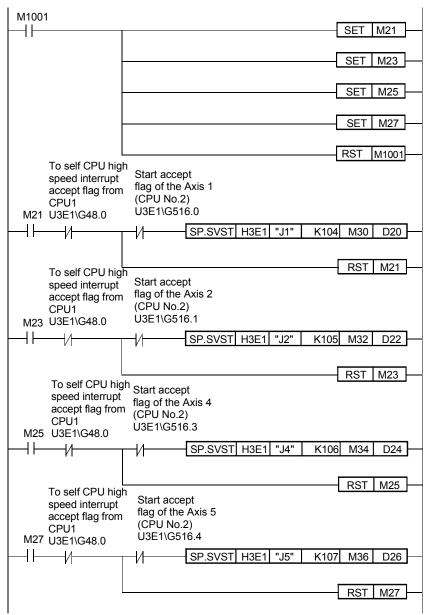
Shared CPU memory address () is decimal address	Description	Example of the reading (When target is the CPU No.2)
30H(48)	The lowest rank bit (30H(48)) toward executing instruction from CPU No.1.	U3E1/G48.0
31H(49)	The lowest rank bit (31H(49)) toward executing instruction from CPU No.2.	U3E1/G49.0
32H(50)	The lowest rank bit (32H(50)) toward executing instruction from CPU No.3.	U3E1/G50.0
33H(51)	The lowest rank bit (33H(51)) toward executing instruction from CPU No.4.	U3E1/G51.0

- (b) "To self CPU high speed interrupt accept flag from CPUn" turn ON/OFF at the executing instruction, when the Multiple CPU dedicated instructions are executed to the same CPU from one PLC CPU. Therefore, when each instruction is executed only once at approval the executing condition, it is necessary to take an interlock by internal relay (M10) and so on besides "To self CPU high speed interrupt accept flag from CPUn".
- (2) Execution of the Motion dedicated PLC instruction
 - (a) Motion dedicated PLC instruction can be executed with fixed cycle execute type PLC and interrupt PLC. However, as for a complete device, the program turned on according to fixed cycle executed type PLC and program type (scan or low speed) executed interrupt PLC is different.
 - (b) One Motion CPU can be accepted max.32 instructions simultaneously from multiple other CPUs. (Except S(P).GINT instruction.) If 33 instructions or more are executed Motion CPU returns the complete status[4C08] error. As Motion CPU can be accepted up to 32 instructions, number of acceptable instructions changes according to number of CPUs included Motion CPU. Calculation expression is shown below.


(Number of maximum acceptable instructions per one Motion CPU) = 32 – ((Number of all CPUs) – 2) [Number of instructions]

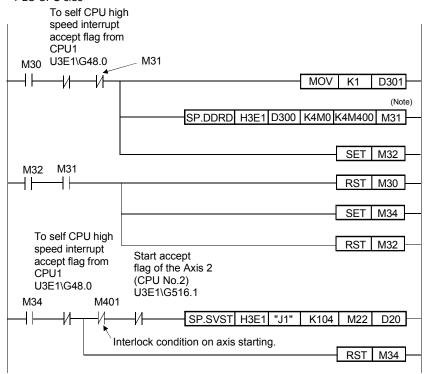
- (c) Local devices and file registers as program are written to device by END processing. Do not use the devices below.
 - Each instruction complete device
 - D1 of S(P).DDRD instruction (The first device of the self CPU which stored the reading data.)

- (d) Use a flag in the shared CPU memory which correspond with each instruction not to execute multiple instructions to the same shaft of the Motion CPU of same CPU No. for the inter-lock condition. (Program example 1)
- (e) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGVS(P).CHGT/S(P).DDWR/ S(P).DDRD instructions cannot be executed simultaneously. Therefore, it is necessary to take an interlock by to self CPU high speed interrupt accept flag from CPUn.
 - One PLC CPU can be executed max.32 Motion dedicated PLC instructions simultaneously using to self CPU high speed interrupt accept flag from CPUn. (Except S(P).GINT instruction.)
 - If 33 instructions or more are executed, the PLC CPU returns the OPERATION ERROR [4107].
- (f) When multiple Motion dedicated PLC instructions are directly executed because one contact-point turns on, an instruction may not be executed. In this case, create a program with reference to program example. (Program example 2)
- (g) When the Motion dedicated function of the operation control step (Fn/FSn) and Motion control program (Kn) in Motion CPU. Since there is no flag which can be distinguished on instruction execution in the PLC CPU, it is necessary to taken an interlock by user program.
 (Program example 3)

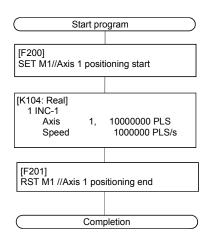

<Program example 1>

Program which executes multiple instructions to the same shaft of the Motion CPU of same CPU No..

<Program example 2>


Program which executes directly multiple Motion dedicated PLC instructions because one contact-point turns on.

<Program example 3>


Program which executes the Motion dedicated function of the operation control step (Fn/FSn) and the motion control program (Kn).

•PLC CPU side

(Note) : 4 points worth of the data from "M0" of the CPU No.2 are stored after M400 by S(P).DDRD instruction.

Motion CPU side

POINT

Access from the PLC CPU is processed before the communication processing of the Motion CPU. Therefore, if the Motion dedicated PLC instruction is frequently performed from the PLC CPU, the scan time of the PLC CPU is not only prolonged, but delay will arise in the communication processing of the Motion CPU. Perform execution of the Motion dedicated PLC instruction from the PLC CPU by S(P).DDWR/S(P).DDRD/S(P).CHGV instruction etc. only at the time of necessity.

(3) Complete status

The error code is stored in the complete status at abnormal completion of the Multiple CPU dedicated instruction. The error code which is stored is shown below. (The error code marked " * " is dedicated with the Motion CPU.)

Complete status (Error code)(H)	Error factor	Corrective action
0	Normal completion	
4C00 *	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01 *	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	
4C02 *	The Motion SFC program No. to start is outside the range 0 to 255.	
4C03 *	The servo program No. to execute is outside the range 0 to 4095.	
4C04 *	Axis No. set by SVST instruction is injustice.	
4C05 *	Axis No. set by CHGA instruction is injustice.	
4C06 *	Axis No. set by CHGV instruction is injustice.	
4C07 *	Axis No. set by CHGT instruction is injustice.	
4C08 *	 When using the S(P).SFCS/S(P).SVST/S(P).CHGA instruction. There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P). SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them. When using the S(P).DDRD/S(P).DDWR instruction. There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).DDRD/S(P).DDWR sum table simultaneously, and the Motion CPU cannot process them. 	Confirm a program, and correct it to a correct PLC program.
4C09 *	CPU No. of the instruction cause is injustice.	
4C0A *	Data error (The instruction which cannot be decoded in the Motion CPU was specified.)	
4C80		
4C81	HAW array of the target CDL	
4C83	H/W error of the target CPU	
4C84		
4C90	Number over of execute instructions of the target CPU. There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS, S(P).SVST, S(P).CHGA, S(P).SHGV, S(P).CHGT, S(P).DDRD and S(P).DDWD sum table simultaneously, and the Motion CPU cannot process them.	

(4) Self CPU operation data area used by Motion dedicated instruction (30H to 33H) The complete status of the to self CPU high speed interrupt accept flag from CPUn is stored in the following address.

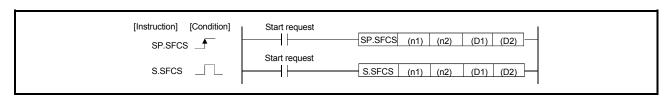
Shared CPU memory address	Name	Description
30H(48)	To self CPU high speed interrupt accept flag from CPU1	
31H(49)	To self CPU high speed interrupt accept flag from CPU2	This area is used to check whether to self CPU high speed interrupt accept flag from CPUn can be accepted or not.
32H(50)	To self CPU high speed interrupt accept flag from CPU3	0: To self CPU high speed interrupt accept flag from CPUn accept usable. 1: To self CPU high speed interrupt accept flag from CPUn accept disable.
33H(51)	To self CPU high speed interrupt accept flag from CPU4	

(5) System area used by Motion dedicated instruction (204H to 20DH)

The complete status of the each flag is stored in the following address.

Shared CPU memory address	Name	Description			
204H(516)	Start accept flag (Axis1 to 16)	The start accept flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): J1 to J32/ Q172CPU(N): J1 to J8.) OFF: Start accept flag usable			
205H(517)	Start accept flag (Axis17 to 32)	ON : Start accept flag disable b15			
206H(518)	Speed changing flag (Axis1 to 16)	The speed changing flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): J1 to J32/ Q172CPU(N): J1 to J8.) OFF: Start accept usable			
207H(519)	Speed changing flag (Axis17 to 32)	ON : Start accept disable b15			
208H(520)	Synchronous encoder current value changing flag (Axis1 to 12) (Note-1)	The synchronous encoder current value change flag is stored by the 1 to 16 axis, each bit. (As for a bit's actually being set Q173CPU(N): E1 to E12/Q172CPU(N): E1 to E8.) OFF: Start accept usable ON: Start accept disable b15 b1 b0 208H(520) address E16 E2 E1			
20CH(524)	Cam axis within-one-revolution current value changing flag (Axis1 to 16) (Note-1)	The cam axis within-one-revolution current value changing flag is stored by the 1 to 32 axis, each bit. (As for a bit's actually being set Q173CPU(N): C1 to C32/Q172CPU(N): C1 to C8.) OFF: Start accept usable			
20DH(525)	Cam axis within-one-revolution current value changing flag (Axis17 to 32) (Note-1)	ON : Start accept disable b15			

(Note-1): It can be used in SV22.


5.2 Motion SFC Start Request from The PLC CPU to The Motion CPU: S(P).SFCS (PLC instruction: S(P).SFCS)

 Motion SFC start request instruction from the PLC CPU to the Motion CPU (S(P).SFCS)

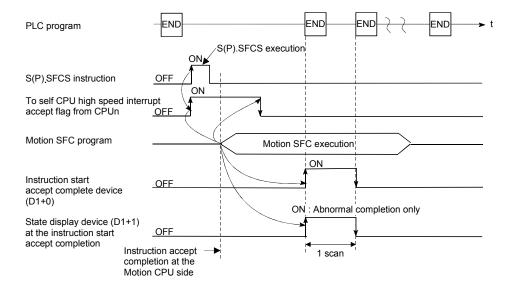
æ	Usable devices										
Setting data (Note)		devices n, User)	File		Indirectly direct I fur	Bit Indirectly digit specified	Special Index function		Constant	Other	
Set	Bit	Word	register	specified	device	Bit	Word	module U□\G□	register Z□	K, H	Other
(n1)		0	0	0	0					0	
(n2)		0	0	0	0					0	
(D1)	0	0	0					·			
(D2)		0	0		0						

 \bigcirc : Usable \triangle : Usable partly

(Note): Setting data (n1) to (D2): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(n2)	Motion SFC program No. to start.	16-bit binary
(D1)	Complete devices (D1+0): Device which make turn on for one scan at start accept completion of instruction. (D1+1): Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary


(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.

- (2) Request to start the Motion SFC program of the program No. specified with (n2). The Motion SFC program can start any task setting of the normal task, event task and NMI task.
- (3) This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (4) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).SFCS instruction.

When the Motion dedicated PLC instruction is started continuously, it is necessary to execute the next instruction after the complete device of executing instruction turns on.

[Operation of the self CPU at execution of S(P).SFCS instruction]

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a
4C02	The Motion SFC program No. to start is outside the range 0 to 255.	program, and correct it to a correct PLC
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	program, and correct it to a
4002	Specified instruction is wrong.	correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.	

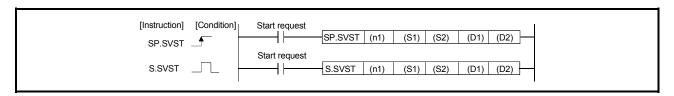
(Note): 0000H (Normal)

[Program example]

This program starts the Motion SFC program No.10 of the Motion CPU No.4.

```
M0 M1
Normal complete program
M1
Abnormal complete program
```

5.3 Servo Program Start Request from The PLC CPU to The Motion CPU: S(P).SVST (PLC instruction: S(P).SVST)


Refer to Section "1.3.4" for the applicable version of the Motion CPU and the software.

 Servo program start request instruction from the PLC CPU to the Motion CPU (S(P).SVST)

					Usabl	e devices	1				
Setting data (Note)		devices n, User)	File	Bit digit	Indirectly specified		CNET/10 J□\□	Special function	Index register	Constant	Other
Set	Bit	Word	register	specified	- I · I	Bit	Word	module U□\G□	Z□	K, H	Otrici
(n1)		0	0	0	0					0	
(S1)		0	0		0						0
(S2)		0	0	0	0					0	
(D1)	0	0	0								
(D2)		0	0		0						

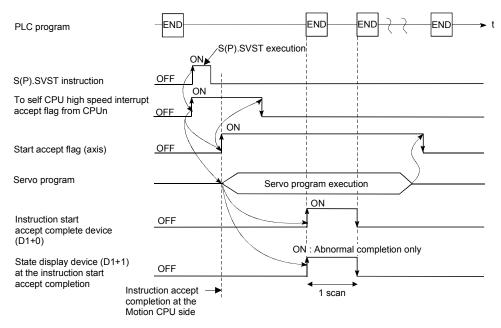
 \bigcirc : Usable \triangle : Usable partly

(Note): Setting data except (S1): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(S1)	Axis No.("Jn") ^(Note-2) to start. Q173CPU(N): J1 to J32/Q172CPU(N): J1 to J8	Character sequence
(S2)	Servo program No. to start.	16-bit binary
(D1)	Complete devices (D1+0): Device which make turn on for one scan at start accept completion of instruction. (D1+1): Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.


(Note-2): "n" shows the numerical value correspond to axis No...

 $\label{eq:quantum_quantum_quantum_quantum} Q173CPU(N): Axis No.1 \ to \ No.8 \ (n=1 \ to \ 8)$

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) Request to start the servo program specified with (S2).
- (3) This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (4) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/ S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).SFCS instruction. When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
- (5) When the servo program is executed also at the motion control step (Kn) in the Motion CPU, it is necessary to take an inter-lock by user program, because there is no flag which can distinguish the axis starting in the PLC CPU. Start accept flag (M2001 to M2032) of the motion devices or positioning start completion flag (M2400+20n) is used as the inter-lock condition.
- (6) It is necessary to take an inter-lock by the start accept flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..

[Operation]

(1) The start accept status of each axis can be confirmed with the start accept flag in the shared CPU memory of target CPU.

- (2) S(P).SVST instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete device

It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.

(b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

Normal completion : OFF

 Abnormal completion: It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.

[Setting range]

(1) Setting of the starting axis

The starting axis set as (S1) sets J + Axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 32
Q172CPU(N)	1 to 8

Up to 8 axes can be set. If multiple axes are set, it sets without dividing in a space etc,.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

And, the axis No. to start does not need to be a order.

Example) When multiple axes (Axis1, Axis2, Axis10, Axis11) are set. "J1J2J10J11"

(2) Setting of the servo program No.

(S2) usable range	
0 to 4095	

[Start accept flag (System area)]

The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

Shared CPU memory address () is decimal address			Description		
204H(516) 205H(517)	The start accept flag is sto (As for a bit's actually being Q172CPU(N): J1 to J8.) OFF: Start accept flag ON: Start accept flag of 204H(516) address 205H(517) address	g set (Q173CPU(N) : J1 to J32/	b1 J2	b0 J1 J17

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	
4C03	The servo program No. to execute is outside the range 0 to 4095.	Confirm a program, and correct it to a
4C04	Axis No. set by SVST instruction is injustice.	correct PLC
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)


The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

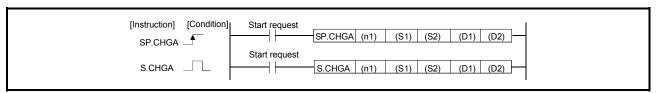
Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU is by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction be composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.	

(Note): 0000H (Normal)

[Program example]

Program which requests to start the servo program No.10 toward axis No.1 and No.2 of the Motion CPU No.4. from the PLC CPU No.1.

5.4 Current Value Change Instruction from The PLC CPU to The Motion CPU: S(P).CHGA (PLC instruction: S(P).CHGA)


Refer to Section "1.3.4" for the applicable version of the Motion CPU and the software.

• Current value change instruction from the PLC CPU to the Motion CPU (S(P).CHGA)

ğ					Usabl	e devices	1				
Setting data (Note)		System Liser\ FIIA		Indirectly specified MELSECNET/10 direct J□\□		Special Index register		Constant	Other		
Set	Bit	Word	register	register specified device by Ward r	module U□\G□	Z□	K, H	Other			
(n1)		0	0	0	0					0	
(S1)		0	0		0						0
(S2)		0	0	0	0					0	
(D1)	0	0	0								
(D2)		0	0		0						

 \bigcirc : Usable \triangle : Usable partly

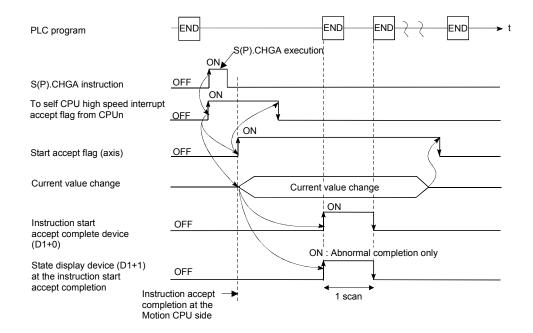
(Note): Setting data except (S1): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(S1)	Axis No. ("Jn") (Note-2) to execute the current value change. Q173CPU(N): J1 to J32/Q172CPU(N): J1 to J8 Synchronous encoder axis No. ("En") to execute the current value change. Q173CPU(N): E1 to E12/Q172CPU(N): E1 to E8	Character sequence
	Cam axis No. ("Cn") to execute the within-one-revolution current value change. Q173CPU(N) : C1 to C32/Q172CPU(N) : C1 to C8	
(S2)	Setting of the current value to change.	32-bit binary
(D1)	Complete devices (D1+0): Device which make turn on for one scan at start accept completion of instruction. (D1+1): Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.

(Note-2): "n" shows the numerical value which correspond to axis No..


Q173CPU(N): Axis No.1 to No.32 (n=1 to 32) / Q172CPU(N): Axis No.1 to No.8 (n=1 to 8)

When an axis No."Jn" was specified with (S1)

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) The current value change of axis (stopped axis) No. specified with (S1) is changed into the current value specified (S2).
- (3) This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (4) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/ S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGA instruction. When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
- (5) When the servo program is executed also at the motion control step (Kn) in the Motion CPU, it is necessary to take an inter-lock by user program, because there is no flag which can distinguish the axis starting in the PLC CPU. Start accept flag (M2001 to M2032) of the motion devices is used as the inter-lock condition in the Motion CPU.
- (6) It is necessary to take an inter-lock by the start accept flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..
- (7) The current change value is also possible when the servo program which execute the CHGA instruction toward an axis is executed in the S(P).SVST instruction.

[Operation]

- (1) The start accept status of each axis can be confirmed with the start accept flag in the shared CPU memory of target CPU.
- (2) S(P).CHGA instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete deviceIt is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
 - (b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion: It is turned on by the END processing of scan
 which the instruction completed, and turned off by
 the next END processing.

[Setting range]

(1) Setting of axis to execute the current value change.

The starting axis set as (S1) sets J + Axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 32
Q172CPU(N)	1 to 8

The number of axes which can set are only 1 axis.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

(2) Setting of the current value to change.

(S2) usable range	
-2147483648 to 2147483647	

[Start accept flag (System area)]

The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

Shared CPU memory address () is decimal address		Description					
204H(516) 205H(517)	The start accept flag is sto (As for a bit's actually being Q172CPU(N): J1 to J8.) OFF: Start accept flag ON: Start accept flag of 204H(516) address 205H(517) address	g set usab	Q173CPU(N) : J1 to J32/	b1 J2	b0 J1 J17		

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program,
4C05	Axis No. set by CHGA instruction is injustice.	and correct it to a
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	correct PLC program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

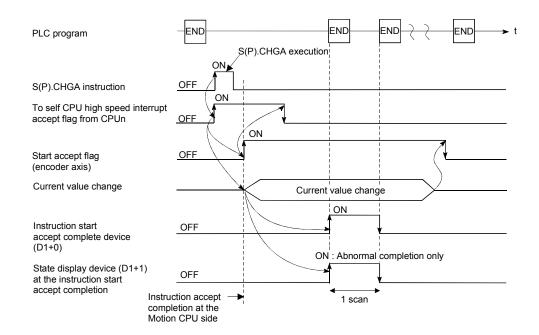
(Note): 0000H (Normal)

[Program example]

Program which changes the current value of the axis No.1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 10.

```
To self CPU Start accept flag of the axis No.1 interrupt accept (CPU No.4) flag from CPU U3E3 U3E3 VG516.0 VG48.0 SP.CHGA H3E3 "J1" K10 M0 D0

M1 Normal complete program


M1 Abnormal complete program
```

When an axis No."En" was specified with (S1)

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU at the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) The synchronous encoder axis current value specified with (S1) is changed into the current value specified (S2) at the virtual mode.
- (3) This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (4) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/ S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGA instruction. When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
- (5) When the servo program is executed also at the motion control step (Kn) in the Motion CPU, it is necessary to take an inter-lock by user program, because there is no flag which can distinguish the axis starting in the PLC CPU. Synchronous encoder current value changing flag (M2101 to M2112) of the motion devices is used as the inter-lock condition in the Motion CPU.
- (6) It is necessary to take an inter-lock by the current value changing flag of the shared CPU memory so that multiple instructions may not be executed toward the same synchronous encoder axis of the same Motion CPU No..
- (7) The current change value is also possible when the servo program which execute the CHGA instruction toward the synchronous encoder axis is executed in the S(P).SVST instruction.

[Operation]

- (1) The current value status of the synchronous encoder axis can be confirmed with the current value changing in the shared CPU memory of target CPU.
- (2) S(P).CHGA instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete device It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
 - (b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion: It is turned on by the END processing of scan
 which the instruction completed, and turned off by
 the next END processing.

[Setting range]

(1) Setting of the synchronous encoder axis to execute the current value change. The synchronous encoder axis to execute the current value change set as (S1) sets E + synchronous encoder axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 12
Q172CPU(N)	1 to 8

The number of axes which can set are only 1 axis.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

(2) Setting of the current value to change.

(S2) usable range	
-2147483648 to 2147483647	

[Synchronous encoder current value changing flag (System area)]

The complete status of the synchronous encoder current value changing flag is stored in the address of the synchronous encoder current value changing flag in the shared CPU memory.

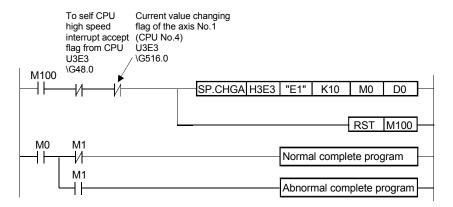
Shared CPU memory address () is decimal address	Description
208H(520)	The synchronous encoder current value changing flag is stored by the 1 to 16 axis, each bit. (As for a bit's actually being set Q173CPU(N): E1 to E12/Q172CPU(N): E1 to E8.) OFF: Start accept usable ON: Start accept disable 208H(520) address E16 E2 E1

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program,
4C05	Axis No. set by CHGA instruction is injustice.	and correct it to a
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	correct PLC program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

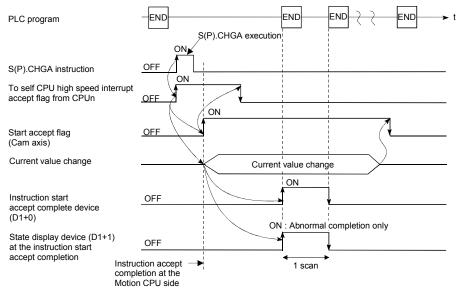

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

(Note): 0000H (Normal)

[Program example]

Program which changes the current value of the axis No.1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 10.



When an axis No."Cn" was specified with (S1)

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) The cam axis within-one-revolution current value specified with (S1) is changed into the current value specified (S2) at the virtual mode.
- (3) This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (4) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/ S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGA instruction. When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
- (5) When the servo program is executed also at the motion control step (Kn) in the Motion CPU, it is necessary to take an inter-lock by user program, because there is no flag which can distinguish the axis starting in the PLC CPU.
- (6) It is necessary to take an inter-lock by the cam axis within-one-revolution current value changing flag of the shared CPU memory so that multiple instructions may not be executed toward the same cam axis of the same Motion CPU No..
- (7) The current change value is also possible when the servo program which execute the CHGA instruction toward the cam axis is executed in the S(P).SVST instruction.

[Operation]

- (1) The current value status of the cam axis within-one-revolution current value change can be confirmed with the cam axis within-one-revolution current value changing flag in the shared CPU memory of target CPU.
- (2) S(P).CHGA instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete deviceIt is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
 - (b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion: It is turned on by the END processing of scan
 which the instruction completed, and turned off by
 the next END processing.

[Setting range]

(1) Setting the cam axis which execute the within-one-revolution current value change.

The cam axis to execute the within-one-revolution current value change set as (S1) sets C + cam axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 32
Q172CPU(N)	1 to 8

The number of axes which can set are only 1 axis.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

(2) Setting of the current value to change.

(S2) usable range	
-2147483648 to 2147483647	_

[Cam axis within-one-revolution current value changing flag (System area)]

The complete status of the cam axis within-one-revolution current value changing flag is stored in the address of the cam axis within-one-revolution current value changing flag in the shared CPU memory.

Shared CPU memory address () is decimal address		Description	
20CH(524) 20DH(525)	1 to 32 axis, each bit.		,

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program,
4C05	Axis No. set by CHGA instruction is injustice.	and correct it to a
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	correct PLC program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

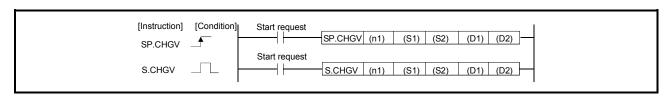
(Note): 0000H (Normal)

[Program example]

Program which changes the current value of the axis No.1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 10.

```
To self CPU
                      Cam axis within-one-revolution
       high speed
                      current value changing flag of the axis
       interrupt accept No.1 (CPU No.4) flag from CPU U3E3
       U3E3
                       \G524.0
       \G48.0
M100
                                    SP.CHGA H3E3 "C1"
                                                              K10
                                                                              D0
                                                                       M0
                                                                      RST
                                                                            M100
 M0
         M1
                                                      Normal complete program
         ₩
         M1
                                                       Abnormal complete program
```

5.5 Speed Change Instruction from The PLC CPU to The Motion CPU: S(P).CHGV (PLC instruction: S(P).CHGV)


Refer to Section "1.3.4" for the applicable version of the Motion CPU and the software.

• Speed change instruction (S(P).CHGV)

	Usable devices												
Setting data (Note)	Internal devices (System, User)		File	Bit digit	Indirectly specified	MELSECNET/10 direct J□\□		Special function	Index register	Constant	Other		
	Bit	Word	register	specified	device	Bit	Word	module U□\G□	Z□	K, H	Otrici		
(n1)		0	0	0	0					0			
(S1)		0	0		0						0		
(S2)		0	0	0	0					0			
(D1)	0	0	0										
(D2)		0	0		0								

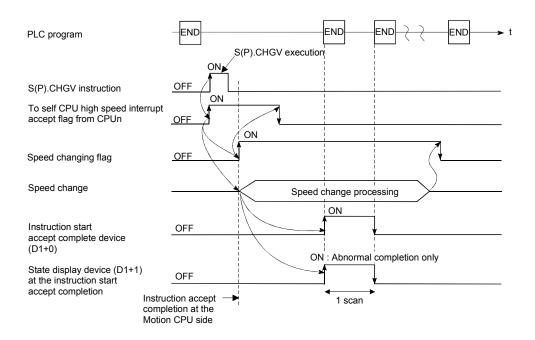
 \bigcirc : Usable \triangle : Usable partly

(Note): Setting data except (S1): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(01)	Axis No. ("Jn") (Note-2) to execute the speed change.	Character
(S1)	Q173CPU(N): J1 to J32/Q172CPU(N): J1 to J8	sequence
(S2)	Setting of the current value to change.	16-bit binary
(D1)	Complete devices (D1+0): Device which make turn on for one scan at start accept completion of instruction. (D1+1): Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.


(Note-2) : "n" shows the numerical value which correspond to axis No..

Q173CPU(N): Axis No.1 to No.32 (n=1 to 32) / Q172CPU(N): Axis No.1 to No.8 (n=1 to 8)

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) The speed change is executed of the axis specified with (S1) during positioning or JOG operating.
- (3) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/ S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGV instruction. When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
- (4) When the speed change is executed also at the operation control step (Fn/FSn) in the Motion CPU, it is necessary to take an inter-lock by user program, because there is no flag which can distinguish the speed changing in the PLC CPU. Speed changing flag (M2061 to M2092) of the motion devices is used as the interlock condition in the Motion CPU.
- (5) It is necessary to take an inter-lock by the speed changing flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..

[Operation]

[Setting range]

(1) Setting of axis to execute the speed change.

The axis to execute the speed change set as (S1) sets J + axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 32
Q172CPU(N)	1 to 8

The number of axes which can set are only 1 axis.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

(2) Setting of the speed to change.

(S2) usable range
-2147483648 to 2147483647

[Speed changing flag (System area)]

The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

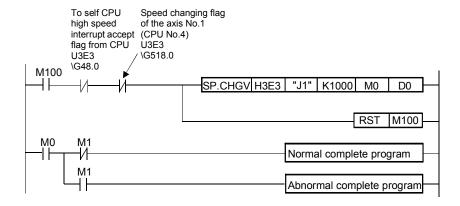
Shared CPU memory address () is decimal address	Description								
206H(518) 207H(519)	The start accept flag is sto (As for a bit's actually being Q172CPU(N): J1 to J8.) OFF: Start accept usat ON: Start accept disate 206H(518) address 207H(519) address	g set Q ole		b1 J2	b0 J1 J17				

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program, and correct it to a correct PLC
4C06	Axis No. set by CHGV instruction is injustice.	program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)


The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

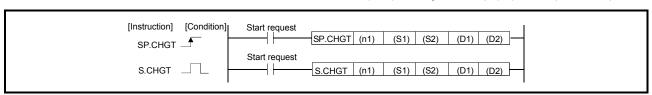
Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

(Note): 0000H (Normal)

[Program example]

Program which changes the positioning speed of the axis No.1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 1000.

5.6 Torque Limit Value Change Request Instruction from The PLC CPU to The Motion CPU: S(P).CHGT (PLC instruction: S(P).CHGT)


Refer to Section "1.3.4" for the applicable version of the Motion CPU and the software.

 Torque limit value change request instruction from the PLC CPU to the Motion CPU (S(P).CHGT)

<u> </u>	Usable devices											
Something design (System, User) Site of the property of the p		File	Bit digit	Indirectly specified	MELSE(direct	CNET/10 J□\□	Special function	Index register	Constant	Other		
Set	Bit	Word	register	specified	device	Bit	Word	module U□\G□	Z□	K, H	Other	
(n1)		0	0	0	0					0		
(S1)		0	0		0						0	
(S2)		0	0	0	0					0		
(D1)	0	0	0									
(D2)		0	0		0							

 \bigcirc : Usable \triangle : Usable partly

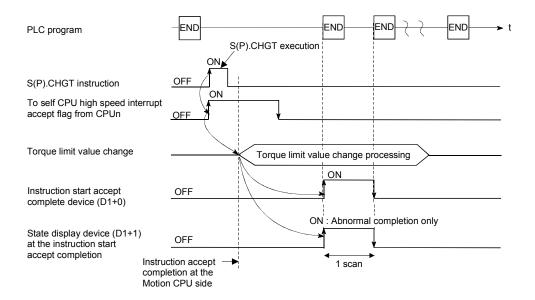
(Note): Setting data except (S1): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(S1)	Axis No. ("Jn") (Note-2) to execute the torque limit value change.	Character
(31)	Q173CPU(N): J1 to J32/Q172CPU(N): J1 to J8	sequence
(S2)	Setting of the torque limit value change to change.	16-bit binary
(D1)	Complete devices (D1+0): Device which make turn on for one scan at start accept completion of instruction. (D1+1): Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.

(Note-2): "n" shows the numerical value which correspond to axis No..


Q173CPU(N): Axis No.1 to No.32 (n=1 to 32) / Q172CPU(N): Axis No.1 to No.8 (n=1 to 8)

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
- (2) The torque limit value of the axis specified with (S1) is changed to the value of (S2) regardless of the state of during operating or stopping at the real mode.
- (3) S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGT instruction.

When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.

[Operation]

[Setting range]

(1) Setting of the axis to execute the torque limit value change.

The axis to execute the torque limit change set as (S1) sets J + axis No. in a character sequence " ".

	(S1) usable range
Q173CPU(N)	1 to 32
Q172CPU(N)	1 to 8

The number of axes which can set are only 1 axis.

The axis No. set in the system setting (Refer to Section 1.5) is used as the axis No. to start.

(2) Setting of the torque limit value to change.

(S2) usable range
1 to 500

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program, and correct it to a correct PLC
4C07	Axis No. set by CHGT instruction is injustice.	program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	and correct it to a correct PLC
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

(Note): 0000H (Normal)

[Program example]

Program which changes the torque limit value of the axis No.1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 10[%].

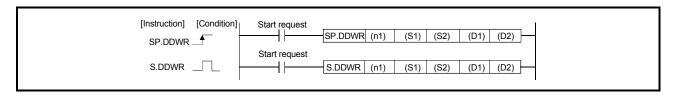
```
To self CPU
high speed
interrupt accept
flag from CPU
U3E3
VG48.0

SP.CHGT H3E3 "J1" K10 M0 D0

RST M100

Normal complete program

M1
Abnormal complete program
```


5.7 Write from The PLC CPU to The Motion CPU: S(P).DDWR (PLC instruction: S(P).DDWR)

• Write instruction from the PLC CPU to the Motion CPU (S(P).DDWR)

<u> </u>	Usable devices												
Softing data (System, Us (System, Us (System) Us (Syst			File	Bit digit	Indirectly specified	MELSECNET/10 direct J□\□		Special function	ı ınaex	Constant	Other		
Set	Bit	Word	register	specified	device	Bit	Word	module U□\G□	Z□	K, H	Outer		
(n1)		0	0	0	0					0			
(S1)		0	0		0								
(S2)		0	0	Δ	0								
(D1)		0		Δ	0								
(D2)	0	0	0										

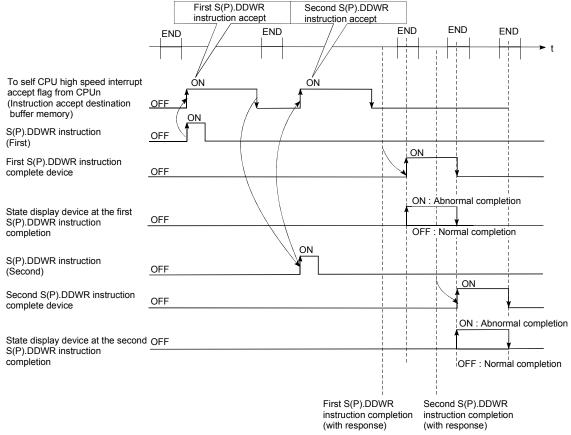
 \bigcirc : Usable \triangle : Usable partly

(Note): Setting data (n1) to (D2): Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.1: 3E0H, CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary
(S1)	First device of the self CPU in which control data is stored.	40 1.1
(S2)	First device of the self CPU in which writing data is stored.	16-bit binary
(D1)	First device of the target Motion CPU which stores the writing data.	
(D2)	Bit device which make turn on for one scan at completion of instruction.	Bit

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.


[Control data]

Device	Item	Setting data	Setting range	Set by
S1+0	Complete status	The condition result at the completion of the instruction is stored. 0 : No error (Normal completion) Except 0 : Error code		System
S1+1	Number of writing data	Set the number of writing data	1 to 16	User

[Controls]

- This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
 - A part for the number of writing data of the control data specified with (S1) of data since the device specified with (S2) of the self CPU are stored to since the word device specified with (D1) of the target CPU (n1) in the Multiple CPU system.
- (2) Figure specification of the bit device is possible for (S2) and (D1). However, figure specification is 4 figures and a start bit device number is only the multiple of 16. It becomes INSTRCT CODE ERROR [4004] when other values are specified.
- (3) If the target CPU is not instruction acceptable condition, even if the S(P).DDWR instruction is executed, it may not be processed. In this case, it is necessary to execute the S(P).DDWR instruction again. (S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).DDWR instruction.). It can be confirmed by data in the shared CPU memory of the target CPU (Motion CPU) whether the instruction is acceptable or not. When the Motion dedicated PLC instruction is started continuously, it is must be design to execute next instruction after executing instruction complete device on.
- (4) The target CPU device range check is not executed with self CPU at the S(P).DDWR instruction execution, but it checks by the target CPU side, and it becomes abnormal completion at the device range over.
- (5) S(P).DDWR instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete deviceIt is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
 - (b) Status display device at the completionIt is turned on/off according to the status of the instruction completion.
 - Normal completion : OFF
 - Abnormal completion: It is turned on by the END processing of scan
 which the instruction completed, and turned off by
 the next END processing.
- (6) SM390 turns on when the target CPU specified with (n1) complete to accept. SM390 turns off when the target CPU specified with (n1) cannot be write correctly by the reset status or error factor (5000 to 5999).

[Operation of the self CPU at execution of S(P).DDWR instruction]

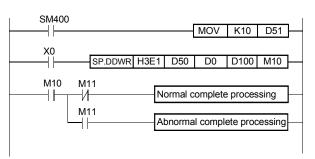
[Errors]

The abnormal completion in the case shown below, and the error code is stored in the control data (S1+ 0 : Complete status).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used with the Motion CPU. Or, it is outside the device range.	Confirm a
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).DDRD/S(P).DDWR sum table simultaneously, and the Motion CPU cannot process them.	program, and correct it to a correct PLC program.
4C09	CPU No. of the instruction cause is injustice.	. 5

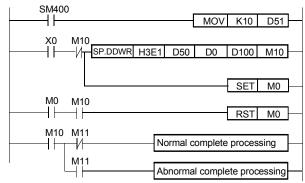
(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.


Error code (Note)	Error factor	Corrective action			
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.				
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.				
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.				
4002	4002 Specified instruction is wrong. The instruction is composed of devices except usable devices.				
4004					
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.				
	Number of the writing data is except 1 to 16.				
4101	Number of writing data exceeds range of the storage device of the written data.				

(Note): 0000H (Normal)

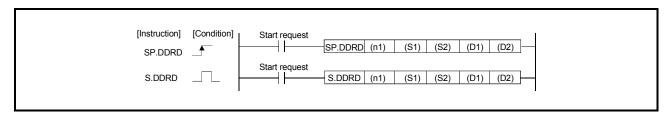
[Program example]


<Example 1>

Program which stores 10 points worth of the data from D0 of the self CPU (CPU No.1) since D100 of CPU No.2., when X0 is turned on.

<Example 2>

Program which stores 10 points worth of the data from D0 of the self CPU (CPU No.1) since D100 of CPU No.2. during turn on X0.


5.8 Read from The Devices of The Motion CPU: S(P).DDRD (PLC instruction: S(P).DDRD)

•	Read instruction	from the	devices	of the	Motion	CPLL: S	(P	חשמם ו
-	Tread Histiaction	110111 1110	ucvices	OI LIIC	IVIOLIOII	OF 0 . C	V F	ルレロバレ

ď	Usable devices																																	
Setting data (Note)	Internal devices (System, User)		File		Bit Indirectly	Indirectly I		MELSECNET/10 direct J□\□				MELSECNET/10 direct J□\□																		ectly direct ID\D		Index register	Constant	Other
Sett	Bit	Word	register	specified	device	Bit	Word	module U□\G□	Z□	K, H	Otrici																							
(n1)		0	0	0	0					0																								
(S1)		0	0		0																													
(S2)		0		Δ	0																													
(D1)		0	0	Δ	0																													
(D2)	0	0	0																															

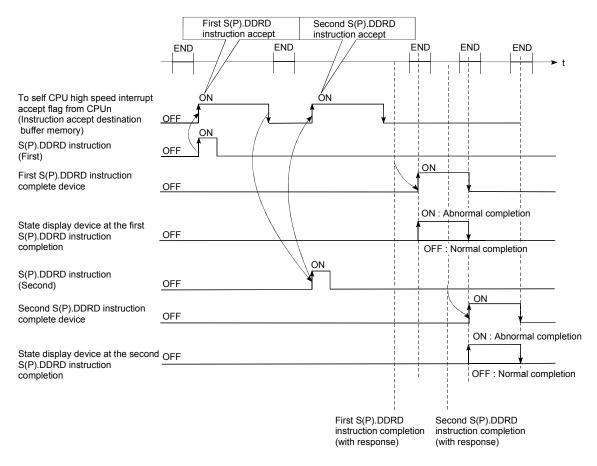
 \bigcirc : Usable \triangle : Usable partly

(Note) : Setting data (n1) to (D2) : Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.1: 3E0H, CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit
(S1)	First device of the self CPU in which control data is stored.	binary
(S2)	First device of the target CPU in which reading data is stored.	
(D1)	First device of the self CPU which stores the reading data.	
(D2)	Bit device which make turn on for one scan at completion of instruction.	Bit

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.


[Control data]

Device	Item	Setting data	Setting range	Set by
S1+0	Complete status	The condition result at the completion of the instruction is stored. 0 : No error (Normal completion) Except 0 : Error code	I	System
S1+1	Number of reading data	Set the number of reading data.	1 to 16	User

[Controls]

- (1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
 - A part for the number of reading data of the control data specified with (S1) of data since the device specified with (S2) in the target CPU (n1) is stored to since the word device specified with (D1) of the self CPU in the Multiple CPU system.
- (2) Figure specification of the bit device is possible for (S2) and (D1). However, figure specification is 4 figures and a start bit device number is only the multiple of 16. It becomes INSTRCT CODE ERROR [4004] when other values are specified.
- (3) If the target CPU is not instruction acceptable condition, even if the S(P).DDWR instruction is executed, it may not be processed. In this case, it is necessary to execute the S(P).DDWR instruction again. (S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/S(P).DDWR cannot be executed simultaneously toward the CPU executing S(P).DDWR instruction.). It can be confirmed by data in the shared CPU memory of the target CPU (Motion CPU) whether the instruction is acceptable or not. When the Motion dedicated PLC instruction is started continuously, it is must be design to execute next instruction after executing instruction complete device on.
- (4) The target CPU device range check is not executed with self CPU at the S(P).DDRD instruction execution, but it checks by the target CPU side, and it becomes abnormal completion at the device range over.
- (5) S(P).DDRD instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
 - (a) Complete deviceIt is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
 - (b) Status display device at the completionIt is turned on/off according to the status of the instruction completion.
 - Normal completion : OFF
 - Abnormal completion: It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
- (6) SM390 turns on when the target CPU specified with (n1) complete to accept. SM390 turns off when the target CPU specified with (n1) cannot be write correctly by the reset status or error factor (5000 to 5999).

[Operation of the self CPU at execution of S(P).DDRD instruction]

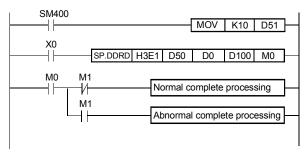
[Errors]

The abnormal completion in the case shown below, and the error code is stored in the control data (S1+ 0 : Complete status).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	Confirm a
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).DDRD/S(P).DDWR sum table simultaneously, and the Motion CPU cannot process them.	program, and correct it to a correct PLC program.
4C09	CPU No. of the instruction cause is injustice.	

(Note): 0000H (Normal)

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.


Error code (Note)	Error factor	Corrective action			
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.				
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.				
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.				
4002	4002 Specified instruction is wrong. The instruction is composed of devices except usable devices.				
4004					
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.				
	Number of the writing data is except 1 to 16.				
4101	Number of writing data exceeds range of the storage device of the written data.				

(Note): 0000H (Normal)

[Program example]

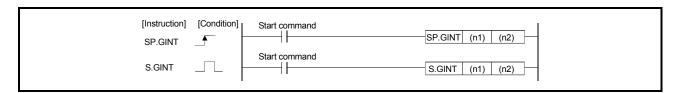
<Example 1>

Program which stores 10 points worth of the data from D0 of the CPU since D100 of self CPU (CPU No.1), when X0 is turned on.

<Example 2>

Program stores 10 points worth of the data from D0 of the CPU No.2 since D100 of self CPU (CPU No.1) during turn on X0..

```
| MOV | K10 | D51 | X0 | M10 | SP.DDRD | H3E1 | D50 | D0 | D100 | M10 | SET | M0 | M10 | M10 | M10 | M10 | M11 | Normal complete processing | M11 | Abnormal complete processing | M11 | M
```


5.9 Interrupt Instruction to The Other CPU: S(P).GINT (PLC instruction: S(P).GINT)

•	Interrupt	instruction	to t	he other	CPU ((S(F).GINT)
---	-----------	-------------	------	----------	-------	------	--------	---

<u></u>	Usable devices										
Setting data (Note)	Internal devices (System, User)		(System User) File Bit Inc		' direct I□\□ I function I	direct ID\D			Constant	Other	
Setl	Bit	Word	register	Digit specified	-	Bit	Word	module U⊟\G⊟	register Z□	K, H	Other
(n1)		0	0	0	0					0	
(n2)		0	0	0	0					0	

 \bigcirc : Usable \triangle : Usable partly

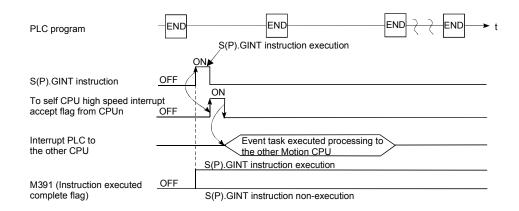
(Note): Setting data (n1) to (D2): Index qualification possible

[Setting data]

Setting data	Description		
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.1: 3E0H, CPU No.2: 3E1H, CPU No.3: 3E2H, CPU No.4: 3E3H	16-bit binary	
(n2)	Interrupt instruction No. (0 to 15)	16-bit binary	

(Note-1): Motion CPU cannot used CPU No.1 in the Multiple CPU configuration.

[Controls]


This instruction generates the interrupt to the Motion CPU by PLC program when the execution instruction of S(P).GINT is started (OFF \rightarrow ON).

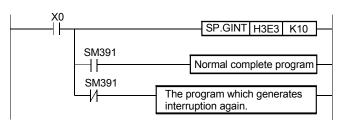
The Motion CPU executes the active program (operation program status) processing of the Motion SFC program set by "PLC interruption of the event task" at the interrupt generation from the PLC CPU.

- This instruction is always effective regardless of the state of real mode/virtual mode/mode switching when the operating system software of Motion CPU is SV22.
- (2) Motion CPU side is during DI (interrupt disable), event processing can make wait even as for the EI (interrupt enable) instruction execution.
- (3) SM390 turn on when the transmission of the instruction toward the target CPU was completed. SM391 (S(P).GINT instruction execution completion flag) turned on simultaneously.

- (4) SM390 turn off when the transmission of the instruction toward the target CPU was not completed. SM391 (S(P).GINT instruction execution completion flag) turned off when the instruction toward the target CPU cannot be transmitted.
- (5) Number of instruction execution does not have restriction, if to self CPU high speed interrupt accept flag from CPUn in the target shared CPU memory of S(P).GINT instruction.

[Operation]

[Errors]

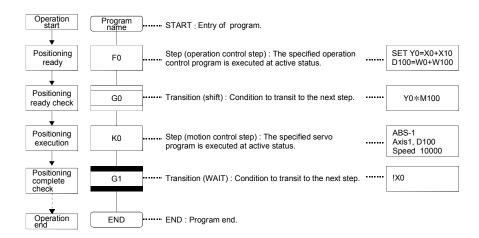

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Complete status (Note) (Error code)(H)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O No. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	05
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program, and
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.	correct it to a correct PLC
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).GINT sum table simultaneously, and the Motion CPU cannot process them.	program.

(Note): 0000H (Normal)

[Program example]

Program which generates the interrupt toward the Motion CPU No.4.


MEMO			

6. MOTION SFC PROGRAMS

Refer to Chapter "19 ERROR CODE LISTS" for details of Motion SFC program error.

6.1 Motion SFC Program Configuration

The Motion SFC Program is constituted by the combination of start, steps, transitions, end and others are shows below.

The above Motion SFC program to be started performs the following operations.

- (1) The step (F0) is activated and the operation specified with the step (F0) is executed (positioning ready). A step in such an active state is called an active step.
- (2) Whether the condition specified with the transition (G0) has enabled or not (whether the positioning program can be started or not) is checked. The active step (F0) is deactivated at the completion of condition and the next step (K0) is activated (servo program (K0) is started).
- (3) The operating completion of the step (K0) (positioning completion of the servo program K0) is checked, and control transits to the next step at operating completion (completion of condition).
- (4) With the transition of the active step as described in above (1) to (3), control is executed and ends at END.

Refer to Section "11.2.2 Task operation" for details of the execution timing of the Motion SFC program such as above.

POINT

The number of steps which can be active steps simultaneously is up to 256, with those of all Motion SFC programs combined. Excess of 256 will result in the Motion SFC Program error 16120.

Each symbol of the Motion SFC program is as follows.

F/FS: Operation control, K: Positioning control, G: Judgment

6.2 Motion SFC Chart Symbol List

Parts as Motion SFC program components are shown below. The operation sequence or transition control is expressed with connecting these parts by directed lines in the Motion SFC program.

		olion of o program		
Classification	Name	Symbol (Code size (byte))	List Representation	Function
	START	Program name (0)	Program name	 Indicates an entry of program as a program name. Specify this program name at a subroutine call. Only one program name for one program.
Program start/end	END	END (8)	END	 Indicates an end (exit) of program. When a subroutine call was carried out, returns to the call source program. Multiple program names or no symbols for one program.
	Motion control step	Kn (8)	CALL Kn	Starts a servo program Kn (K0 to K4095).
	Once execution type operation control step	Fn (8)	CALL Fn	Execute once the operation control program Fn (F0 to F4095).
	Scan execution type operation control step	FSn (8)	CALL FSn	Repeats an operation control program FSn (FS0 to FS4095) until the next transition condition enables.
Step	Subroutine call/start step	Program name	GSUB program name	 When the next of GSUB is WAIT, performs "subroutine call" and transits control to the specified program. Control returns to the call source program at END execution. When the next of GSUB is except WAIT, performs "subroutine start", and starts the specified program and transits to the next (lower part). The start source and destination programs are executed simultaneously, and the call destination program ends at END execution.
	Clear step	CLR Program name	CLR program name	 Stops and ends the specified program running. After an end, it is started from the initial (start step) by restarting the program. When the specified program is during "subroutine call", the subroutine program is also stopped to execute. When the specified program is after "subroutine start", the subroutine program is not stopped to execute. When clearing to the subroutine by which the "subroutine call" was executed, the specified subroutine is stopped to execute, returns to the call source program, and transits to the next.

Classification	Name	Symbol (Code size (byte))	List representation	Function
	Shift (Pre-read transition)	Gn (8)	SFT Gn	 When just before is the motion control step, transits to the next step by formation of transition condition Gn (G0 to G4095) without waiting for the motion operating completion. When just before is the operation control step, transits to the next step by the completion of transition condition after operating execution. When just before is "subroutine call" / "starting step", transits to the next step by formation of transition condition without waiting for the operating completion of subroutine.
	WAIT	Gn (8)	WAIT Gn	 When just before is the motion control step, waits for the motion operating completion and then transits to the next step by the completion of transition condition Gn (G0 to G4095). When just before is the operation control step, transits to the next step by formation of transition condition after operating execution. (Same operation as Shift.) When just before is "subroutine call" or "starting step", waits for the operating completion of subroutine and then transits to the next step by the completion of transition condition.
Transition	WAITON	ON bit device Kn (14)	WAITON bit device	 Prepares for starting of the next motion control step, and issues an instruction immediately when the specified bit device turns ON. Always pair this transition with the motion control step one-for-one.
	WAITOFF	OFF bit device Kn (14)	WAITOFF bit device	 Prepares for starting of the next motion control step, and issues an instruction immediately when the specified bit device turns OFF. Always pair this transition with the motion control step one-for-one.
	Shift Y/N	(Not completion of condition) Gn N (Completion Y of condition)	IFBm IFT1 SFT Gn : JMP IFEm IFT2 SFT Gn+? : JMP IFEm IFEm	 When just before is the motion control step, transits to the next step by formation of transition condition Gn (G0 to G4095) without waiting for the motion operating completion. If not formation of transition condition, transits to the right-connected step. When just before is the operation control step, transits to the next step by the completion of transition condition after operating execution. If not the completion of transition condition, transits to the right-connected step. When just before is "subroutine call" or "starting step", transits to the next step by the completion of transition condition without waiting for the operating of subroutine completion. If not formation of transition condition, transits to the right-connected step.

Classification	Name	Symbol (Code size (byte))	List representation	Function
Transition	WAIT Y/N	(Not completion of condition) Gn N (Completion Y of condition)	IFBM IFT1 WAIT Gn : JMP IFEM IFT2 WAIT Gn+? : JMP IFEM IFEM	 When just before is the motion control step, waits for the motion operating completion and then transits to the next step by formation of transition condition Gn (G0 to G4095). If not completion of transition condition, transits to the right-connected step. When just before is the operation control step, transits to the next step by the completion of transition condition after operating execution. If not the completion of transition condition, transits to the right-connected step. (Same operation as Shift.) When just before is "subroutine call" or "starting step", waits for the operating completion of subroutine, and then transits to the next step by the completion of transition condition. If not formation of transition condition, transits to the right-connected step.
Jump	Jump	Pn (14)	JMP Pn	Jumps to the specified pointer Pn (P0 to P16383) of the self program.
Pointer	Pointer	Pn (8)	Pn	 Indicates a jump destination pointer (label). This pointer can be set at a step, transition, branch point or coupling point. P0 to P16383 can be set in one program. The same No. may also be used in other programs.

6.3 Branch and Coupling Chart List

Branch and coupling patterns which specify step and transition sequences in the Motion SFC charts are shown below.

	Name	Motion SFC chart symbol	List	Function
	(Code size (byte)) Series transition (Corresponding symbol size)		List representation corresponding to the Motion SFC chart symbols shown in Section 6.2.	Steps and transitions connected in series are processed in order from top to bottom. Steps and transitions need not be lined up alternately. When a transition is omitted, unconditional shift processing is performed.
	Selective branch ((Number of branches + 2) × 10)	IFBM IFT1 IFT2	CALL Kn IFBm IFT1 SFT Gn CALL Fn	The route which transition condition enables first is executed after executing the step or transition preceding a branch. Selective branch destinations should always be started by transitions, all of which must be Shift or WAIT. (Using Shift and WAIT together will cause a parallel branch.)
	Selective coupling (8)	IFEm .	JMP IFEM IFT2 SFT Gn' CALL Fn' : (JMP IFEM) IFEM CALL Fn"	 After the route branched by a selective branch has been processed, execution shifts to a coupling point. A coupling may be preceded and followed by either a step or a transition.
Basic type	Parallel branch (Number of branches × 22 + number of coupling points × 2 + 12)	PABM PAT1 PAT2	CALL Kn PABm PAT1 CALL Fn SFT Gn' : JMP PAEm	Multiple routes (steps) connected in parallel are executed simultaneously. Each parallel branch destination may be started by either a step or transition.
	Parallel coupling (8)	PAEm	PAT2 CALL Fn' SFT Gn" : (JMP PAEm) PAEm CALL Fn"	 Execution waits at the coupling point for executions of the routes branched by a parallel branch to be completed, and shifts to the next when executions of all routes are completed. A coupling may be preceded and followed by either a step or a transition. When this coupling is preceded by an FS step, scans are executed during waiting. After waiting is complete, scans are not executed.
(Corre	Jump transition (Corresponding	<normal jump=""> <coupling jump=""></coupling></normal>	CALL Fn JMP Pn	1) Normal jump • After the step or transition preceding this jump transition is executed, execution shifts to the pointer Pn specified within its own program. • The jump destination may either be a step or transition. • When a jump takes place from an FS step to a transition, scans are executed during waiting for
	symbol size)		CALL Fn' Pn CALL Kn	the completion of transition condition of the jump destination. 2) Coupling jump • When a jump to the other route within a parallel branch takes place after the parallel branch, a "coupling jump" takes place and execution waits at the jump destination.

Combining the basic type branches/couplings provides the following application types, which are defined as in the basic types.

	Name	Motion SFC chart symbol	List	Function
	Name	Wolfor St C Chart symbol	representation	1 diletion
	Selective branch Parallel branch	IFBM IFT1 IFT2 PABM PAT1 PAT2	CALL KN IFBM IFT1 SFT Gn PABM PAT1 CALL Fn : JMP PAEM PAT2 CALL Fn'	After a selective branch, a parallel branch can be performed.
	Parallel coupling Selective coupling	PAEm IFEM	: (JMP PAEm) PAEm JMP IFEm IFT2 SFT Gn' CALL Fn" : (JMP IFEm) IFEM SFT Gn"	 The selective coupling point can be the same as the coupling point of a parallel coupling for selective branch → parallel branch. Note that in the Motion SFC chart, this type is displayed in order of a parallel coupling → a selective coupling, as shown on the left. In this case, a pointer (Pn) cannot be set between the parallel coupling point (PAEm) and the selective coupling point (IFEm).
Application type	Parallel branch Selective branch	PABM PAT1 PAT2 IFBM FIT1 FIT2	SFT Gn PABm PAT1 CALL Fn IFBm IFT1	After a parallel branch, a selective branch can be performed.
	Selective coupling Parallel coupling	IFEM PAEM	SFT Gn' CALL Fn' : JMP IFEM IFT2 SFT Gn" CALL Fn" : (JMP IFEM) IFEM JMP PAEM PAT2 CALL Fn''' : CALL Kn (JMP PAEM) PAEM SFT Gn"'	 The parallel coupling point can be the same as the coupling point of a selective coupling for parallel branch → selective branch. Note that in the Motion SFC chart, this type is displayed in order of a selective coupling → a parallel coupling, as shown on the left. In this case, a pointer (Pn) cannot be set between the selective coupling point (IFEm) and the parallel coupling point (PAEm).

	Name	SFC chart symbol	List	Function
	Selective branch Selective branch	IFBm IFT1 IFT2 IFT1	representation CALL Kn IFBm IFT1 SFT Gn IFBm+1 IFT1 SFT Gn' : JMP IFEm+1 IFT2 SFT Gn" : (JMP IFEm+1)	After a selective branch, a selective branch can be performed.
Appli-	Selective coupling Selective coupling	IFEm+1	IFEm+1 JMP IFEm IFT2 SFT Gn''' CALL Fn' : (JMP IFEm) IFEm SFT Gn'''' :	 The two selective coupling points for selective branch → selective branch can be the same. Note that in the Motion SFC chart, this type is displayed in order of a selective coupling→a selective coupling, as shown on the left. In this case, a pointer (Pn) cannot be set between the selective coupling point (IFEm+1) and the selective coupling point (IFEm).
cation type	Parallel branch Parallel branch	PABM PAT1 PAT1 PAT1 PAT2	CALL Kn PABm PAT1 SFT Gn PABm+1 PAT1 CALL Fn' : JMP PAEm+1 PAT2 CALL Fn"	 After a parallel branch, a parallel branch can be performed. A parallel branch can be nested up to four levels.
	Parallel coupling Parallel coupling	PAEm+1 PAEm	; (JMP PAEm+1) PAEm+1 JMP PAEm PAT2 CALL Fn''' ; CALL Kn JMP PAEm PAEm SFT Gn'''	 The two parallel coupling points for parallel branch parallel branch can be the same. Note that in the Motion SFC chart, this type is displayed in order of a parallel coupling → a parallel coupling, as shown on the left. In this case, a pointer (Pn) cannot be set between the parallel coupling point (PAEm+1) and the parallel coupling point (PAEm).

	Name	SFC chart symbol	List representation	Function
	Selective coupling Parallel branch	IFEM PAT1 PAT2	: (JMP IFEM) IFEM PABM PAT1 CALL FN : JMP PAEM PAT2 CALL Fn' : (JMP PAEM) PAEM	 The selective coupling point and parallel branch point can be the same. Note that in the Motion SFC chart, this type is displayed in order of a selective coupling → a parallel branch, as shown on the left. In this case, a pointer (Pn) cannot be set between the selective coupling point (IFEm) and the parallel branch point (PABm).
Appli- cation	Parallel coupling Selective branch	PAEm IFT1 IFT2	: JMP PAEM PAEM IFBM IFT1 SFT Gn : JMP IFEM IFT2 SFT Gn' : (JMP IFEM) IFEM IFEM	 The parallel coupling point and selective branch point can be the same. Note that in the Motion SFC chart, this type is displayed in order of a parallel coupling → a selective branch, as shown on the left. Execution waits at the parallel coupling point and shifts to the selective branch. In this case, a pointer (Pn) cannot be set between the parallel coupling point (PAEm) and the selective branch point (IFBm).
type	Selective coupling Selective branch	IFEM IFT1 IFT2	: (JMP IFEM) IFEM IFBM+1 IFT1 SFT Gn : JMP IFEM+1 IFT2 SFT Gn' : (JMP IFEM+1) IFEM+1	 The selective coupling point and selective branch point can be the same. Note that in the Motion SFC chart, this type is displayed in order of a selective coupling → a selective branch, as shown on the left. In this case, a pointer (Pn) cannot be set between the selective coupling point (IFEm) and the selective branch point (IFBm+1).
	Parallel coupling Parallel branch	PAEm PABm+1 PAT1 PAT2	: (JMP PAEm) PAEm PABm+1 PAT1 CALL Fn : JMP PAEm+1 PAT2 CALL Fn' : (JMP PAEm+1) PAEm+1	 The parallel coupling point and parallel branch point can be the same. Note that in the Motion SFC chart, this type is displayed in order of a parallel coupling → a parallel branch, as shown on the left. Execution waits at the parallel coupling point and shifts to the parallel branch. In this case, a pointer (Pn) cannot be set between the parallel coupling point (PAEm) and the parallel branch point (PABm+1).

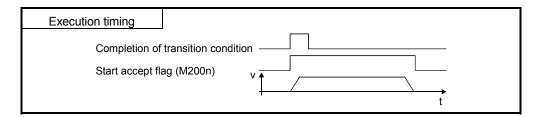
6.4 Motion SFC Program Name

Set the "Motion SFC program name" to the Motion SFC program No.0 to No.255 individually. (Make this setting in the "Motion SFC program management window" on the Motion SFC program edit screen.)

Set the Motion SFC program name within 16 characters. Specify this Motion SFC program name for a "subroutine call/start step (GSUB)" and "clear step (CLR)". Motion SFC programs correspond to No.0 to No.255 and saved in a one program-forone file format. The preset "Motion SFC program name" is used as the file name of the Motion SFC Program file for user file management. (Refer to Chapter "12 USER FILES" for details.)

POINT

- (1) It is can be set the Motion SFC program to any of No.0 to No.255. There are no specific programs which have special roles.
- (2) "\$" cannot be used in the first character of the Motion SFC program name.
- (3) "/:;,.*?"<> |" cannot be used in Motion SFC program name.


6.5 Steps

6.5.1 Motion control step

Name	Symbol	Function
Motion control step	17	Starts the servo program Kn. Specified range: K0 to K4095

[Operations]

- (1) Turns on the start accept flag of the axis specified with the specified servo program Kn (n = 0 to 4095) runnnig.
- (2) Starts the specified servo program Kn (n = 0 to 4095).

[Errors]

(1) When the specified servo program Kn does not exist, the Motion SFC program error [16200] will occur and stops to execute the Motion SFC program at the error detection.

[Instructions]

- (1) When the current value change is executed in the Motion SFC program running, specify the CHGA instruction in the servo program and call it at the motion control step.
- (2) If the servo program has stopped due to a major/minor error which occurred at or during a start of the servo program specified with the motion control step, the Motion SFC program continues executing. When the Motion SFC program is stopped at error detection, provide an error detection condition at the transition (transition condition).

6.5.2 Operation control step

Name	Symbol	Function
Operation control step	F /FO	Executes the operation control program Fn/FSn. Specified range: F0 to F4095/FS0 to FS4095

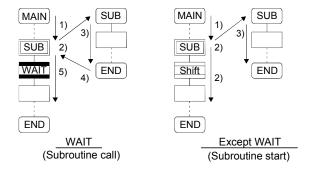
[Operations]

- (1) Once execution type operation control step Fn
 In the case of Fn, executes the specified operation control program Fn (n = 0 to 4095) once.
- (2) Scan execution type operation control step FSn In the case of FSn, repeats the specified operation control program FSn (n =0 to 4095) until the next transition condition enables.

[Errors]

(1) When the specified operation control program Fn/FSn does not exist, the Motion SFC program error [16201] will occur and stops to execute the Motion SFC program at the error detection.

[Instructions]


- (1) Refer to Chapter "7 OPERATION CONTROL PROGRAMS" for operation expressions that may be described in operation control programs.
- (2) If an operation or similar error occurs the operation control program running, the Motion SFC program continues executing.

6.5.3 Subroutine call/start step

Name	Symbol	Function
Subroutine call/start step	Program name	Calls/starts the Motion SFC program of the specified program name.

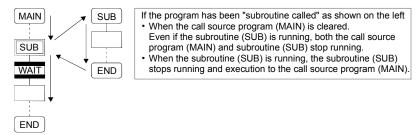
[Operations]

- (1) Calls/starts the Motion SFC program of the specified program name.
- (2) Control varies with the type of the transition coupled next to the subroutine call/start step.
 - (a) WAIT (Subroutine Call) When the subroutine call step is executed, control transits to the specified program as shown below, and when END of the called program is executed, control returns to the call source program.
 - (b) Except WAIT (Subroutine Start) When the subroutine start step is executed, control starts the specified program and then shifts to the next as shown below. Since, the start source and destination Motion SFC programs are executed in parallel. The started program ends at END execution.

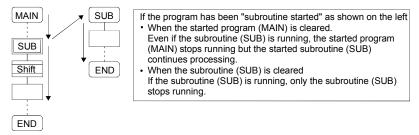
[Errors]

- (1) When the specified Motion SFC program does not exist at a subroutine call/start, the Motion SFC program error [16005] will occur and stops to execute the Motion SFC program at the error detection.
- (2) When the called/started Motion SFC program is already starting at a subroutine call/start, the Motion SFC program error [16006] will occur and stops to execute the Motion SFC program at the error detection.
- (3) When the self program is started at a subroutine call/start, the Motion SFC program error [16110] will occur and stops to execute the Motion SFC program at the error detection.
- (4) When the subroutine to be called/started at a subroutine call/start in the Motion SFC program 2 running which was called/started from the Motion SFC program 1 is the Motion SFC program 1 (call source/start program), the Motion SFC program error [16111] will occur and the call/start source Motion SFC program 2 running is stopped at the point of error detection.

[Instructions]


- (1) There are no restrictions on the depth of subroutine call/start nesting.
- (2) For a subroutine start, the start source Motion SFC program continues processing if the start destination Motion SFC program stops due to an error.
- (3) For a subroutine call, the call source Motion SFC program stops running as soon as the call destination Motion SFC program stops due to an error.

6.5.4 Clear step


Name	Symbol	Function
Clear step	CLR Program name	Stops the Motion SFC program of the specified program name.

[Operations]

- (1) Stops the specified Motion SFC program running.
- (2) The clear-specified Motion SFC program will not start automatically after stopped if it has been set to start automatically.
- (3) The specified program may be its self program.
- (4) If the specified program is being subroutine called, the subroutine program called is also stopped. (Shown below)

(5) When the specified program has been subroutine started, the subroutine program started continues processing. (Shown below)

(6) When the servo program started from the specified program is starting, the servo program continues processing.

[Errors]

(1) When the Motion SFC program specified with the clear step does not exist, the Motion SFC program error [16203] will occur.

[Instructions]

- (1) When the Motion SFC program specified with the clear step is not starting, an error does not occur specifically and this step is ignored.
- (2) If the Motion SFC program running is stopped by the clear step, the output is held.

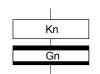
6.6 Transitions

You can describe conditional and operation expressions at transitions. The operation expression described here is repeated until the transition condition enables, as at the scan execution type operation step.

Refer to Chapter "8 TRANSITION PROGRAMS" for the conditional/operation expressions that can be described in transition conditions.

(1) Combinations with motion control steps

(a) Motion control step + Shift

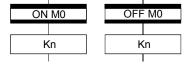


[Operations]

 Transits to the next step by formation of transition condition Gn without waiting for the operating completion of the servo program Kn started at the motion control step.

(b) Motion control step + WAIT

[Operations]

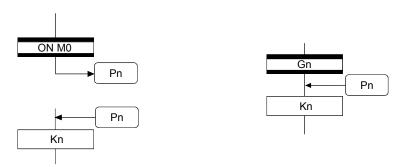


- Waits for the operating completion of the servo program Kn started at the motion control step, and then transits to the next step by formation of transition condition Gn.
- The operation completion condition of the servo program Kn is not needed in the transition condition Gn.
- An error stop of the started servo program Kn at/during a start is also regarded as an operation completion.

(c) WAITON/WAITOFF + Motion control step

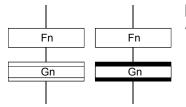
[Operations]

 Prepares for the start of the motion control step next to WAITON/WAITOFF, and makes a start immediately when the specified bit device turns ON/OFF. When the motion control step is executed without being used with WAITON/WAITOFF, preparations for a start are made after the transition condition preceding the motion control step enables. This will cause a variation of delay/starting time between when the transition condition is completed and when a start is made, but a combination with WAITON/WAITOFF can eliminate the variation of the above delay/starting time.



Specifiable bit devices

Device	Range
X	X0 to X1FFF
Y	Y0 to Y1FFF
M	M0 to M8191
Special M	M9000 to M9255
L	L0 to L8191
В	B0 to B1FFF
F	F0 to F2047


[Instructions]

- Always pair a transition with a motion control step one-for-one. If the step following WAITON/WAITOFF is not a motion control step, the Motion SFC program error [16102] will occur and the Motion SFC program running will stop at the error detection.
- An error will not occur if the jump destination immediately after WAITON/WAITOFF is a motion control step. (Left below)
- A pointer may exist immediately after WAITON/WAITOFF. (Right below)

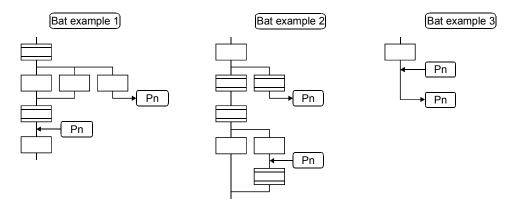
- If the servo program specified with a motion control step could not be started due to a major/minor error, the Motion SFC program continues running and execution shifts to the next, independently of the WAITON/WAITOFF bit device status. To stop the Motion SFC program at error detection, provide an error detection condition at the next transition (transition condition).
- The following instructions can be used in the motion control step used combining the WAITON/WAITOFF.
 (Linear interpolation control, circular interpolation control, helical interpolation, speed switching control, position follow-up control, constant-speed control and high speed oscillation.)

(2) Combination with operation control step

[Operations]

- At an operation control step, both Shift and WAIT perform the same operation, and after executing of the operation control program
 Fn, transits to the next step by formation of transition condition Gn.
- (3) Combination with subroutine call/start step Refer to Section "6.5.3 Subroutine call/start step".

6.7 Jump, Pointer



[Operations]

- Setting a jump will cause a jump to the specified pointer Pn of the self program.
- · You can set pointers at steps, transitions, branch points and coupling points.
- You can set pointers Pn at P0 to P16383 in one program.

[Instructions]

- You cannot make a jump setting which will exit from within parallel branch-parallel coupling. Connect directly. (Bad example 1 given below)
- You cannot make a jump setting from outside parallel branch-parallel coupling to within parallel branch-parallel coupling. (Bad example 2 given below)
- You cannot make a setting where a label and a jump will continue.
 (Bad example 3 given below)

6.8 END

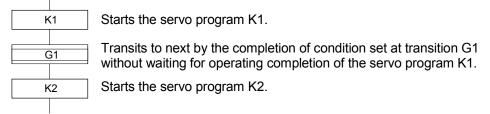
[Operations]

- Ends a program. (In this case of an event task or NMI task, operation changes with end operation setting of the program parameter. Refer to Section "11.5 Program Parameters" for details.)
- Making a subroutine call will return to the call source Motion SFC program.

[Instructions]

- END may be set a multiple number of times in one program.
- END cannot be set between a parallel branch and a parallel coupling.
- The output is held after the Motion SFC program is ended by END.

6.9 Branches, Couplings

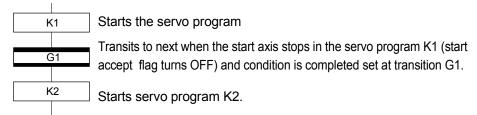

6.9.1 Series transition

Transits execution to the subsequent step or transition connected in series.

(1) To start a servo program or subroutine and shift execution to the next without waiting for operation completion

Set Shift at a transition.

In this case, the transition (shift) may be omitted. When you omitted the transition, an unconditional shift transition is performed.

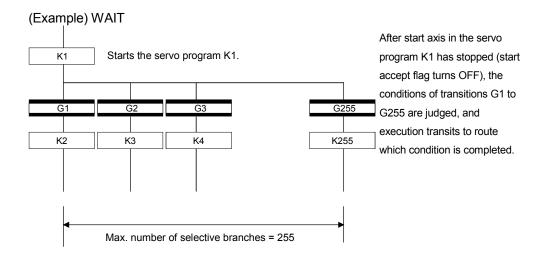


POINT

For a subroutine start, self program and a subroutine program are processed in parallel.

(2) To start a servo program or subroutine and proceed to the next step on operation completion

Set WAIT at a transition.

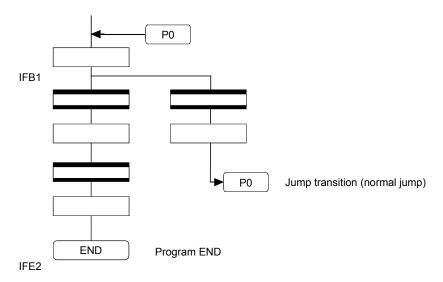

POINT

- (1) The above start accept flag of the axis started in the next servo program K2 is not included in interlocks.
 - To use it as an interlock, the user should set it in the transition condition G1.
- (2) WAIT must be set to proceed to the next step on operation completion. However, when there are specifically no conditions to be set as interlocks, set "NOP (No Operation)" in the transition program (Gn).

6.9.2 Selective branch, selective coupling

(1) Selective branch

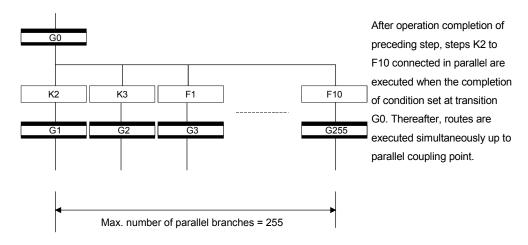
Executes only the route which condition was judged to have enabled first among the conditions of multiple transitions connected in parallel. Transitions must be all Shifts or WAITs.



POINT

- (1) Transition condition judgment is not always executed from left to right.
- (2) Using Shift and WAIT together will cause a parallel branch.

(2) Selective coupling

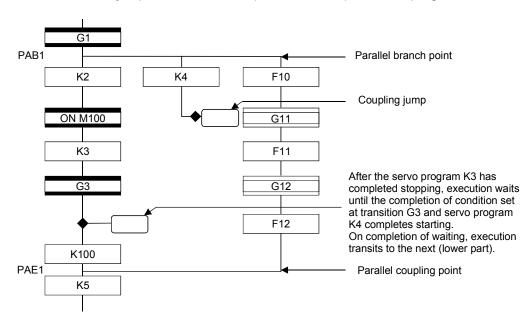

Recoupling of routes into a single route after their processing completions following a selective branch will be a selective coupling. However, you can also make a setting where no coupling will be made as shown below.

6.9.3 Parallel branch, parallel coupling

(1) Parallel branch

Multiple routes connected in parallel are executed simultaneously. Each parallel branch destination may be started by either a step or a transition.

POINT

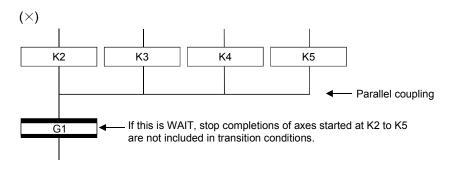

"Shift" or "WAIT" can be set to a transition preceding a parallel branch.

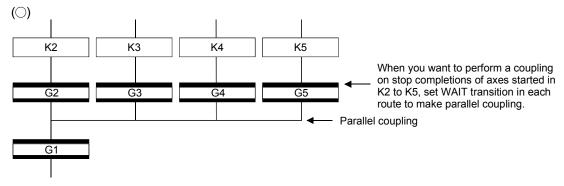
"WAITON" and "WAITOFF" cannot be set.

(2) Parallel coupling

A parallel branch must be coupled by a parallel coupling. A jump setting to another branch route can be made within parallel branch-parallel coupling. In this case, a jump destination is a midway parallel coupling point (coupling jump).

You cannot set a jump to exit from within parallel branch-parallel coupling.

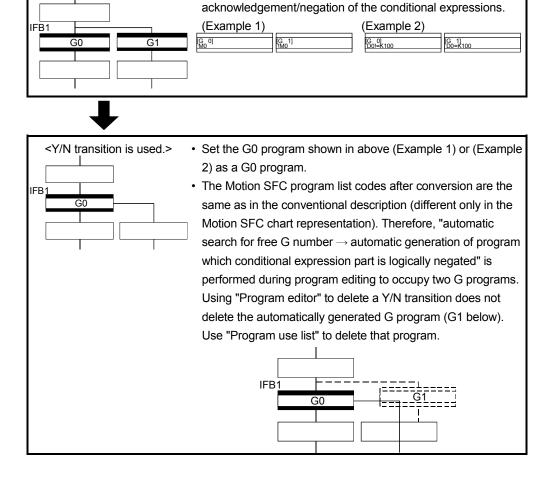



POINT

The number of parallel branches need not match that of couplings at a parallel coupling point.

(In the example of the diagram in Section 6.9.3 (2), the number of parallel branches is 3 and that of couplings is 2.)

When a WAIT transition is set right after a parallel coupling, the stop completions of the axes are not included in the waiting conditions if the parallel coupling is preceded by motion control steps. To perform a parallel coupling on stop completions, set WAIT transitions before a parallel coupling.


6.10 Y/N Transitions

When routes are branch at a transition condition enables and disable, "Shift Y/N transition" or "WAIT Y/N transition" will be useful.

Name	Symbol	Function
Shift Y/N transition	(Not completion of condition) Gn (Completion Y of condition)	When a transition condition set at Gn enables, execution shifts to the lower step. When that condition disables, execution shifts to the right-connected step.
WAIT Y/N transition	(Not completion of condition) Gn (Completion Y of condition)	Differences between "Shift Y/N" and "WAIT Y/N" are the same as those between "Shift" and "WAIT".

A Y/N transition is designed to describe the following two-route selective branch program easily.

<Y/N transition is not used.> • G0 and G1 programs should be different only in

(1) Automatic free G number search feature

(a) When not set to automatic numbering

Searches for a free number forward, starting with the "set G number + 1" at the "Shift Y/N" or "WAIT Y/N" symbol.

When no free numbers are found after a search up to 4095, a search is made from 0 to the "set G number - 1".

(b) When set to automatic numbering

Searches for a free number forward (or backward) in the automatic numbering range, starting with the "automatically numbered G number + 1 (or -1)" at the "Shift Y/N" or "WAIT Y/N" symbol. (The searching method is as in the automatic numbering setting.)

(2) Automatic logical NOT program generation feature

Automatically generates a program which logically negates the conditional expression block (last block) of the transition program set at "Shift Y/N" or "WAIT Y/N".

The basic is shown below.

<Setting program (conditional expression block)>

Conditional expression//(bit conditional expression or comparison conditional expression)

<Logically negated, automatically generated program (conditional expression block)>

!Conditional expression//(bit conditional expression or comparison conditional expression)

Examples are shown below.

<Setting program (conditional expression block)>

(Example 1)

M0 //Bit device ON

(Example 2)

D0!=K100 //Data register D0 is not K100

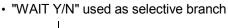
<Logically negated, automatically generated program (conditional expression block)>

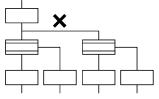
(Example 1)

!(M0) //Bit device OFF

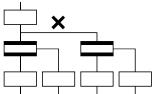
(Example 2)

!(D0!=K100) //Data register D0 is K100

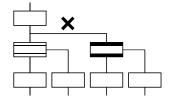

POINT

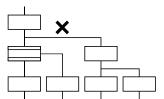

Refer to Section "1.2.3 (2) Table of the operation control/transition instruction" for the instructions usable in the conditional expressions of "Shift Y/N" or "WAIT Y/N" transition programs.

(3) Instructions for the Motion SFC charts

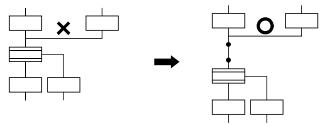

Any Motion SFC chart that will be meaningless to or conflict with the definition of Y/N transitions will result in an error at the time of editing (or Motion SFC chart conversion). Their patterns and instructions will be given below.

- (a) When "Shift Y/N" or "WAIT Y/N" is connected as a selective branch or parallel branch: Error
- "Shift Y/N" used as selective branch

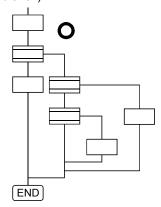


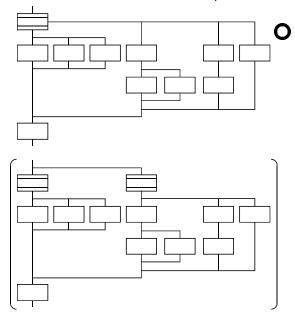


 "Shift Y/N" and "WAIT Y/N" used as parallel branch



 "Shift (or WAIT) Y/N" used with other step/transition as parallel branch or selective branch


- (b) When a coupling precedes "Shift Y/N" or "WAIT Y/N: Provide "coupling-branch continuation" in between.
- Direct coupling with "Shift Y/N" or "WAIT Y/N" is not allowed.
- Provide "coupling-branch continuation" in between.


- (c) The following patterns may be set.
- • End (END) from "Shift Y/N" or "WAIT Y/N" • Jump from "Shift Y/N" or "WAIT Y/N"

• Continuation from "Shift Y/N" or "WAIT Y/N" to "Shift Y/N" or "WAIT Y/N" (selective branch-selective branch)

• When there are two or more connection lines from Y/N side of "Shift Y/N" or "WAIT Y/N", selective branch continues to selective branch or parallel branch.

6.11 Motion SFC Comments

A comment can be set to each symbol of the step/transition in the motion SFC chart. Comments are shown in the Motion SFC chart by changing the display mode to "Comment display" on the Motion SFC program edit screen.

Since the Motion SFC comments are stored into the CPU code area, performing read from PC displays the Motion SFC chart with comments.

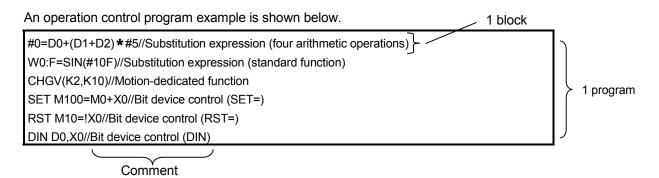
Classification	Name	Symbol	Comment Setting
	START	Program name	
Program start/end	END	END	Comment setting cannot be made.
	Motion control step	Kn	
	Once execution type operation control step	Fn	
Step	Scan execution type operation control step	FSn	
	Subroutine call/start step	Program name	
	Clear step	CLR Program name	
	Shift (preread transition)	Gn	Up to 80 characters Displayed in 20 characters × 4 lines
	WAIT	Gn	
Transition	WAITON	ON bit device	
Hansiion	WAITOFF	OFF bit device	
	Shift Y/N	Gn	
	WAIT Y/N	Gn	
Jump	Jump	Pn	Up to 64 characters
Pointer	Pointer	← Pn	Displayed in 16 characters × 4 lines

POINT

- (1) Motion SFC comments are stored into the CPU code area. The CPU code area stores the Motion SFC chart codes, operation control (F/FS) program codes, transition (G) program codes and Motion SFC comments. Be careful not to set too many comments to avoid code area overflow. (Refer to Section "1.2.2 (2) (b) Motion SFC Performance Specifications" for the code area sizes.)
- (2) You cannot use "," in comment statements.

MEMO			

7. OPERATION CONTROL PROGRAMS


Refer to Section "19.2 Motion SFC Error Code List" for error codes of the operation error.

(Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE)" and "Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)" for minor errors of the operation error.)

7.1 Operation Control Programs

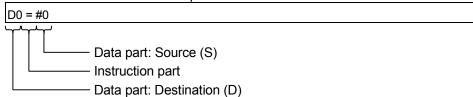
(1) Operation control programs

- (a) Substitution operation expressions, motion-dedicated functions and bit device control commands can be set in operation control program.
- (b) Multiple blocks in one operation control program can be set.
- (c) There are no restrictions on the number of blocks that may be set in one operation control program. However, one program is within 64k bytes.
- (d) The maximum number of characters in one block is 128.
- (e) Transition conditions cannot be set. Transition conditions can be set only in transition programs.
- (f) The bit conditional expression that logical data value (true or false) is returned in an operation control program, a comparison conditional expression can be set up only as a source (S) of device set (SET=) or device reset (RST=).

(2) Priorities of operators and functions

Operators and functions have the following priorities.
Using parentheses allows an operation sequence to be specified freely.

Priority	Item (Operator, Function)
High	Calculation within parentheses (())
\wedge	Standard function (SIN, COS, etc.),
	Type conversion (USHORT, LONG, etc.)
	Bit inversion (~), logical negation (!), sign inversion (—)
	Multiplication (*), division (/), remainder (%)
	Addition (+), subtraction (-)
	Bit left shift (<<), bit right shift (>>)
	Comparison operators: Less than (<), less than or equal to (<=),
	more than (>), more than or equal to (>=)
	Comparison operators: Equal to (==), not equal to (!=)
	Bit logical AND (&)
	Bit exclusive OR (^)
	Bit logical OR ()
	Logical AND (*)
\bigvee	Logical OR (+)
Low	Substitution (=)


(3) Structure of instruction

Many of the instructions usable in operation control programs can be divided into instruction and data parts.

The instruction and data parts are used for the following purposes.

- Instruction part...... Indicates the function of that instruction.
- Data part...... Indicates the data used in the instruction.

"Substitution: =" structure example

(a) Source (S)

- 1) The source is the data used in an operation.
- 2) It varies with the device specified in each instruction is shown below.
 - · Bit or word device

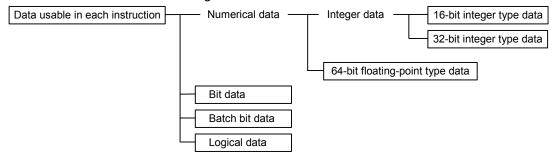
Specify the device which stores the data used in operation.

The data must have been stored in the specified device until the operation is executed.

Changing the data stored in the specified device during program execution allows changing the data used in that instruction.

Constant

Specify the numerical value used in an operation.


As the constant is set during program creation, it cannot be changed during program running.

(b) Destination (D)

- 1) As the destination data, after-operation data is stored.
- 2) Destination data is always set the device for storing the data.

(4) How to specify data

There are the following six different data usable in each instruction.

(a) 16-bit integer type data

The 16-bit integer type data is 16-bit integer value data.

Word devices are used in increments of 1 point.

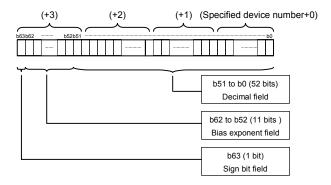
Data ranges are shown below.

	Decimal representation	Hexadecimal representation
Data range	K-32768 to K32767	H0000 to HFFFF

(b) 32-bit integer type data

The 32-bit integer type data is 32-bit integer value data.

Word devices are used in increments of 2 points: (specified device No.), (specified device No.+1). Data ranges are shown below.


	Decimal representation	Hexadecimal representation
Data range	K-2147483648L to K2147483647L	H00000000L to HFFFFFFFL

(c) 64-bit floating-point type data

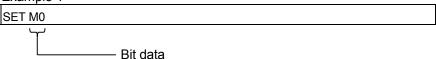
The 64-bit floating-point type data is IEEE-formatted, 64-bit floating-point value data.

Word devices are used in increments of 4 points: (specified device No.), (specified device No.+1), (specified device No.+2), (specified device No.+3).

1) The internal bit locations are shown below.

2) The represented value is shown below. (The bias value is H3FF.) (-1) [Sign bit field] * (1.0+[decimal field]) *2

3) Data ranges are shown below.


	Decimal representation	Hexadecimal representation
	K 1 70E+209 to K 2 22E 209	Н000000000000000000000,
	K-1.79E+308 to K-2.23E-308,	H001000000000000000000 to H7FE1CCF385EBC89F,
Data range	K2.23E-308 to K1.79E+308	Н8000000000000000,
	NZ.Z3E-300 (U N 1./9E+300	H801000000000000000000 to HFFE1CCF385EBC89F

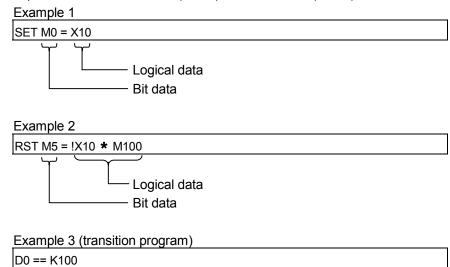
4) A round-off error may be produced in a 64-bit floating-point type data operation. Especially when using 64-bit floating-point type data in a comparison operation, note that a round-off error may cause an intended operation.

Example) In the following transition program, the result of the comparison operation may not become true depending on the value of #200F due to a round-off error.

(d) Bit data

The bit data is the data where a contact/coil or similar device is handled in increments of 1 bit. It is used in device set (SET=) and device reset (RST=). Example 1

(e) Batch bit data


The batch bit data is the data where bit data is handled in increments of 16/32 points. It is used in device input (DIN) and device output (DOUT). As indicated below, whether the bit data is handled in increments of 16 or 32 points is governed by the data type of the word device used as an input destination/output source.

	Increments of 16 points	Increments of 32 points
Drogram ovamnia	DIN #0, M0	DIN #0L, M0
Program example	DOUT M0, D0	DOUT M0, DOL
	(Specified device No.) to	(Specified device No.) to
Used devices	(specified device No.+15)	(specified device No.+31)
	M0 to M15 in the above program	M0 to M31 in the above program
	example	example

(f) Logical data

The logical data is a value returned by a bit or comparison conditional expression and indicates whether the result is true or false.

Normally, it is used in the conditional expression of a transition program. In an operation control program, the logical data is used in a bit conditional expression set to device set (SET=) or device reset (RST=).

Logical data

7.2 Device Descriptions

Word and bit device descriptions are shown below.

(1) Word device descriptions

	Device descriptions			
	16-bit integer type	32-bit integer type ("n" is even No.)	64-bit floating-point type ("n" is even No.)	Device No. (n) specifying ranges
Data register	Dn	DnL	DnF	0 to 8191
Link register	Wn	WnL	Wn:F	0 to 1FFF
Special register	Dn	DnL	DnF	9000 to 9255
Motion device	#n	#nL	#nF	0 to 8191 (Motion SFC dedicated devices : 8000 to 8191)
Coasting timer	_	FT	_	_

- (a) For differentiation, the 32-bit floating-point type is ended by L and the 64-bit floating-point type by F (F for the link register).
- (b) For the 32-bit integer type and 64-bit floating-point type, specify the device number with an even number. (It cannot be set as an odd number).
- (c) The coasting timer FT is incremented per 888µs. (The coasting timer is a 32-bit integer type.)

(2) Bit device descriptions

	Device description	Device No. (n) specifyied ranges
Input relay	Xn/PXn	0 to 1FFF
Output relay	Yn/PYn	0 to 1FFF
Internal relay	Mn	0 to 8191
Latch relay	Ln	0 to 8191
Link relay	Bn	0 to 1FFF
Annunciator	Fn	0 to 2047
Special relay	Mn	9000 to 9255

(a) When using the device in DIN or DOUT as batch bit data, specify n as a multiple of 16.

(3) Indirect specification of device No.

In the above word/bit device descriptions, device No. (n) can be specified indirectly.

- (a) Indirect specification of device No. (n) using word device
 - The word device which the device No. was specified indirectly cannot be used.
 - You can use the 16-bit and 32-bit integer type word devices for indirect specification.

The 64-bit floating-point type cannot be used.

(Description examples)

Good example	Bad example
#(D10)	#(D(D5))
D(#10L)F	D(#4F)

- (b) Indirect specification of device No. (n) using word device using operation expression
 - Device No. can be specified indirectly by calculation expressions which use the following data and operators.

	16-bit integer type word device
Usable data	32-bit integer type word device
Osable data	16-bit integer type constant
	32-bit integer type constant
	Addition: +
	Subtraction: —
Harrista and the second	Multiplication: *
Usable operators	Division: /
	Remainder: %
	Sign inversion: —

- The word device which the device No. is specified indirectly cannot be used.
- Only one operator may be used.

(Description examples)

Good example	Bad example		
#(D10-K5)	#(D(D5)F+K20)		
D(#10L%H6L)F	D(#4L< <k2)< td=""></k2)<>		

(Note): When you want to use the result of calculation other than the above to specify the device No. indirectly, describe it in two blocks as shown below.

D0=SHORT(ASIN(#0F))
W0=#(D0)

7.3 Constant Descriptions

The constant descriptions of the 16-bit integer type, 32-bit integer type and 64-bit floating-point type are shown below.

	16-Bit integer type	32-Bit integer type	64-Bit floating-point type
Decimal representation	K-32768 to K32767	K-2147483648L to K2147483647L	K-1.79E+308 to K-2.23E-308, K0.0, K2.23E-308 to K1.79E+308
Hexadecimal representation	H0000 to HFFFF	H00000000L to HFFFFFFFL	_

- (1) The 32-bit integer type is ended by L and the 64-bit floating-point type is provided with a decimal point and exponent part (E) to denote their data types explicitly.
- (2) The constant without the data type is regarded as the applicable minimum type.
- (3) The constant in decimal representation is headed by K and the one in hexadecimal representation by H. K can be omitted.
- (4) The 64-bit floating-point type cannot be represented in hexadecimal.

F/FS	G
0	0

7.4 Binary Operations

7.4.1 Substitution : =

Format (D)=(S)		Number of basic steps	4
----------------	--	-----------------------	---

[Usable data]

		Usable Data									1	
		Word device Constant				Word device Constant						
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression	
(S)	_	0	0	0	0	0	0	0	0	_	_	
(D)	_	0	0	0	_	_	_	_	_	_	_	

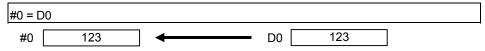
○ : Usable

[Setting data]

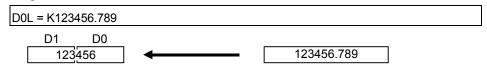
Setting data	Description	Data type of result
(S)	Word device/constant/calculation expression to be substituted	Data type of (D)
(D)	Word device which will store the operation result	

[Functions]

- (1) The data value specified with (S) is substituted to the specified word device at (D).
- (2) When (S) and (D) differ in data type, the data at (S) is converted into the data type of (D) and the resultant data is substituted.

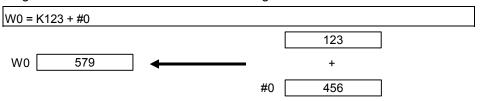

(When (D) is a 16- or 32-bit integer type and (S) is a 64-bit floating-point type, the fraction part of (S) is discarded.)

[Errors]


- (1) An operation error will occur if:
 - The data at (S) is outside the data type range of (D); or
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which substitutes the D0 value to #0



(2) Program which substitutes K123456.789 to D0L

The 64-bit floating-point type is converted into the 32-bit integer type and the result is substituted.

(3) Program which substitutes the result of adding K123 and #0 to W0

F/FS	G
0	0

7.4.2 Addition: +

Format (S1)+(S2)	Number of basic steps 4
------------------	-------------------------

[Usable data]

	Usable Data												
		Word device Constant				Word device Co				Constant			
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression		
(S1)	_	0	0	0	0	0	0	0	0	_	_		
(S2)	_	0	0	0	0	0	0	0	0	_	_		

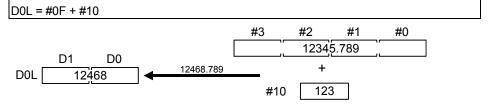
○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Augend data	Data type of (S1) or (S2)
(S2)	Addend data	which is greater

[Functions]

- (1) The data specified with (S2) is added to the data specified with (S1).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.


[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which substitutes the result of adding K123 and #0 to W0

(2) Program which substitutes the result of adding #0F and #10 to D0L

The 64-bit floating-point type data are used for addition, and the result is converted into the 32-bit integer type and then substituted.

F/FS	G
0	0

7.4.3 Subtraction: -

Format (S1)-(S2)	Number of basic steps 4	
------------------	-------------------------	--

[Usable data]

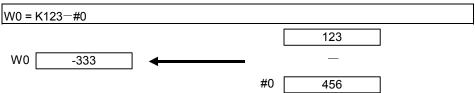
						Usable Data					_
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

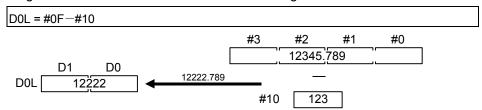
[Setting data]

Setting data	Description	Data type of result
(S1)	Minuend data	Data type of (S1) or (S2)
(S2)	Subtracted data	which is greater

[Functions]


- (1) The data specified with (S2) is subtracted from the data specified with (S1).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.

[Errors]


- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which substitutes the result of subtracting #0 from K123 to W0

(2) Program which substitutes the result of subtracting #10 from #0F to D0L

64-bit floating-point type data are used for subtraction, and the result is converted into the 32-bit integer type and then substituted. The

F/FS	G
0	0

7.4.4 Multiplication: *

Format	(C1) * (C2)	Number of basis stone	4
Format	(S1) * (S2)	Number of basic steps	4

[Usable data]

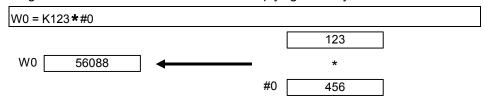
		-	Word	dovice		Usable Data					
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	device 64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Multiplicand data	Data type of (S1) or (S2)
(S2)	Multiplier data	which is greater

[Functions]


- (1) The data specified with (S1) is multiplied by the data specified with (S2).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which substitutes the result of multiplying K123 by #0 to W0

(2) Program which substitutes the result of multiplying #0F by #10 to D0L

The 64-bit floating-point type data are used for multiplication, and the result is converted into the 32-bit integer type and then substituted.

F/FS	G
0	0

7.4.5 Division: /

		Format	(\$1)/(\$2)		Number of basic steps	4
--	--	--------	-------------	--	-----------------------	---

[Usable data]

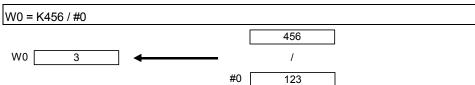
						Usable Data					_
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

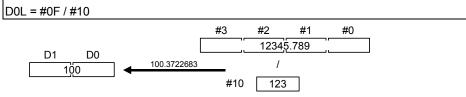
[Setting data]

Setting data	Description	Data type of result
(S1)	Dividend data	Data type of (S1) or (S2)
(S2)	Divisor data	which is greater

[Functions]


- (1) The data specified with (S1) is divided by the data specified with (S2) to find a quotient.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.

[Errors]


- (1) An operation error will occur if:
 - (S2) is 0; or
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which divides K456 by #0 and substitutes a quotient to W0

(2) Program which divides #0F by #10 and substitutes a quotient to D0L

The 64-bit floating-point type data are used for division, and the quotient is converted into the 32-bit integer type and then substituted.

F/FS	G
0	0

7.4.6 Remainder: %

Format (S1)%(S2)		Number of basic steps	4
------------------	--	-----------------------	---

[Usable data]

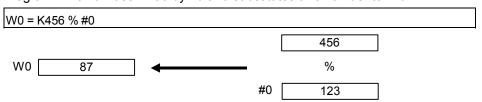
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	1	0	0	0	_	0	-	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Dividend data	Data type (integer type) of
(S2)	Divisor data	(S1) or (S2) which is greater (Integer type)

[Functions]


- (1) The data specified with (S1) is divided by the data specified with (S2) to find a remainder.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S2) is 0; or
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which divides K456 by #0 and substitutes a remainder to W0

F/FS	G
0	0

7.5 Bit Operations

7.5.1 Bit inversion (Complement): ~

Format	~ (S)	Number of basic steps	2
	(-)	Training or or parete etepe	

[Usable data]

		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data whose hits will be inverted	Data type of (S)
	Data whose bits will be inverted	(Integer type)

[Functions]

(1) The bit inverted value of the data specified with (S) is found.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the bit inverted value of #0 and substitutes the value to D0

F/FS	G
0	0

7.5.2 Bit logical AND: &

Format (S1)&(S2)	Number of basic steps 4
------------------	-------------------------

[Usable data]

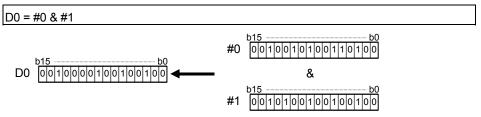
	Usable Data										
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)		Data type of (S1) or (S2)
(S2)	Data which will be ANDed bit-by-bit	which is greater (Integer type)

[Functions]


- (1) The bit-by-bit logical product of the data specified with (S1) and the data specified with (S2) is found.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which ANDs #0 and #1 and substitutes the result to D0

F/FS	G
0	0

7.5.3 Bit logical OR: |

Format	(S1) (S2)	Number of basic steps	4
	(0:):(0=)	110111001 01 00010 01000	•

[Usable data]

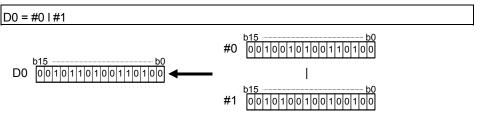
						Usable Data			ı		
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	device 64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	D. C. Lind W. C. C. Lind Lind	Data type of (S1) or (S2)
(S2)	Data which will be ORed bit-by-bit	which is greater (Integer type)

[Functions]


- (1) The bit-by-bit logical add of the data specified with (S1) and the data specified with (S2) is found.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which ORs #0 and #1 and substitutes the result to D0

F/FS	G		
0	0		

7.5.4 Bit exclusive logical OR: ^

Format (S1)^(S2)	Number of basic steps 4	
------------------	-------------------------	--

[Usable data]

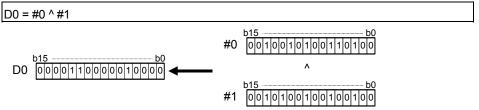
						Usable Data			ı		
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	device 64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Data which will be EVOLUON/E OB ad hit hou hit	Data type of (S1) or (S2)
(S2)	Data which will be EXCLUSIVE ORed bit-by-bit	which is greater (Integer type)

[Functions]


- (1) The bit-by-bit exclusive logical add of the data specified with (S1) and the data specified with (S2) is found.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which EXCLUSIVE ORs #0 and #1 and substitutes the result to D0

F/FS	G		
0	0		

7.5.5 Bit right shift: >>

Format	(S1) >> (S2)		Number of basic steps	4
--------	--------------	--	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

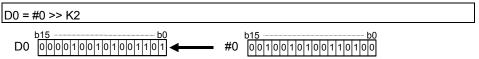
[Setting data]

Setting data	Description	Data type of result
(S1)	Data to be right-shifted	Data type of (S1)
(S2)	Number of right shifts	(Integer type)

[Functions]

- (1) The data specified with (S1) is shifted to the right by the number of times specified with (S2).
- (2) If the most significant bit of (S1) is 1, 1 enters the most significant bit of the right shift result.

If the most significant bit of (S1) is 0, 0 enters the most significant bit of the right shift result.


- (3) When (S1) is a 16-bit integer type and (S2) is a negative number or not less than 16, the result is 0.
- (4) When (S1) is a 32-bit integer type and (S2) is a negative number or not less than 32, the result is 0.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which shifts #0 two bit positions to the right and substitutes the result to D0

F/FS	G
0	0

7.5.6 Bit left shift : <<

Format	(S1) << (S2)	Number of basic steps	4

[Usable data]

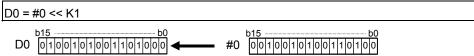
						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	_	0	0	0	_	0	_	_
(S2)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Data to be left-shifted	Data type of (S1)
(S2)	Number of left shifts	(Integer type)

[Functions]


- (1) The data specified with (S1) is shifted to the left by the number of times specified with (S2).
- (2) 0 enters the least significant bit of the left shift result.
- (3) When (S1) is a 16-bit integer type and (S2) is a negative number or not less than 16, the result is 0.
- (4) When (S1) is a 32-bit integer type and (S2) is a negative number or not less than 32, the result is 0.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which shifts #0 one bit position to the left and substitutes the result to D0

F/FS	G
0	0

7.5.7 Sign inversion (Complement of 2): —

Format	-(S)		Number of basic steps	2
--------	------	--	-----------------------	---

[Usable data]

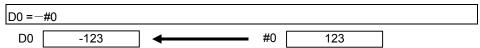
						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data whose sign will be inverted	Data type of (S)

[Functions]


(1) The sign-inverted value of the data specified with (S) is found.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which substitutes the sign-inverted value of #0 to D0

F/FS	G
0	0

7.6 Standard Functions

7.6.1 Sine: SIN

Format SIN(S)		Number of basic steps	2
---------------	--	-----------------------	---

[Usable data]

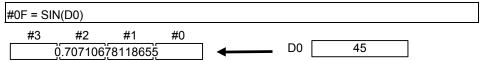
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Angle data on which SIN (sine) operation will be performed	Floating-point type

[Functions]


- (1) SIN (sine) operation is performed on the data specified with (S).
- (2) The data specified with (S) is in an angle (degree) unit.
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which performs the SIN operation of D0 and substitutes the result to #0F

F/FS	G
0	0

7.6.2 Cosine: COS

Format COS(S)	Number of basic steps	2
---------------	-----------------------	---

[Usable data]

	Usable Data										
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Angle data on which COS (cosine) operation will be performed	Floating-point type

[Functions]

- (1) COS (cosine) operation is performed on the data specified with (S).
- (2) The data specified with (S) is in an angle (degree) unit.
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which performs the COS operation of D0 and substitutes the result to #0F

F/FS	G
0	0

7.6.3 Tangent: TAN

Format TAN(S)	Number of basic steps 2	
---------------	-------------------------	--

[Usable data]

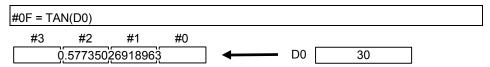
	Usable Data										
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Angle data on which TAN (tangent) operation will	Floating-point type
	be performed	r loating-point type

[Functions]


- (1) TAN (tangent) operation is performed on the data specified with (S).
- (2) The data specified with (S) is in an angle (degree) unit.
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range; or
 - (S) is 90+(180*n). ("n" is an integer)

[Program examples]

(1) Program which performs the TAN operation of D0 and substitutes the result to #0F

F/FS	G
0	0

7.6.4 Arcsine: ASIN

Format ASIN(S)	Number of basic steps 2
----------------	-------------------------

[Usable data]

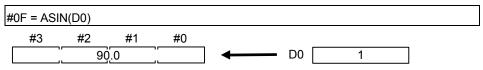
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(0)	SIN value data on which SIN ⁻¹ (arcsine) operation	
(S)	will be performed	Floating-point type

[Functions]


- (1) SIN ⁻¹ (arcsine) operation is performed on the SIN value data specified with (S) to find an angle.
- (2) The SIN value specified with (S) must be within the range -1.0 to 1.0.
- (3) The operation result is in an angle (degree) unit.
- (4) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is outside the range -1.0 to 1.0; or
 - (S) is an indirectly specified device and its device number is outside the range.

[Program examples]

(1) Program which performs the SIN ⁻¹ (arcsine) operation of D0 and substitutes the result to #0F

F/FS	G
0	0

7.6.5 Arccosine: ACOS

Format ACOS(S)	Number of basic steps 2	
----------------	-------------------------	--

[Usable data]

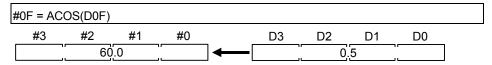
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(0)	COS value data on which COS ⁻¹ (arccosine)	Election of the
(S)	operation will be performed	Floating-point type

[Functions]


- (1) COS ⁻¹ (arccosine) operation is performed on the COS value data specified with (S) to find an angle.
- (2) The COS value specified with (S) must be within the range -1.0 to 1.0.
- (3) The operation result is in an angle (degree) unit.
- (4) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is outside the range -1.0 to 1.0; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which performs the COS ⁻¹ (arccosine) operation of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.6 Arctangent : ATAN

Format ATAN(S)		Number of basic steps	2
----------------	--	-----------------------	---

[Usable data]

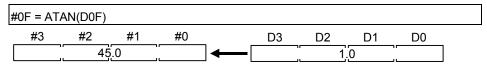
		Usable Data											
		Word device Constant				Word device							
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression		
(S)	_	0	0	0	0	0	0	0	0	_	_		

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(0)	TAN value data on which TAN ⁻¹ (arctangent)	
(8)	operation will be performed	Floating-point type

[Functions]


- (1) TAN ⁻¹ (arctangent) operation is performed on the TAN value data specified with (S) to find an angle.
- (2) The operation result is in an angle (degree) unit.
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which performs the TAN ⁻¹ (arctangent) operation of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.7 Square root: SQRT

Format SQRT(S)	Num	ber of basic steps	2
----------------	-----	--------------------	---

[Usable data]

		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data on which square root operation will be	Floating point type
(3)	performed	Floating-point type

[Functions]


- (1) The square root of the data specified with (S) is found.
- (2) Only a positive number may be specified with (S). (Operation cannot be performed with a negative number.)
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is a negative number; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the square root of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.8 Natural logarithm: LN

Format LN(S)		Number of basic steps	2
--------------	--	-----------------------	---

[Usable data]

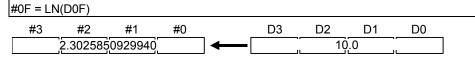
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data on which natural logarithm operation will be	Floating point type
(3)	performed	Floating-point type

[Functions]


- (1) The base e natural logarithm of the data specified with (S) is found.
- (2) Only a positive number may be specified with (S). (Operation cannot be performed with a negative number.)
- (3) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is 0 or a negative number; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the natural logarithm of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.9 Exponential operation: EXP

Format EXP(S)	Number of basic steps	2
---------------	-----------------------	---

[Usable data]

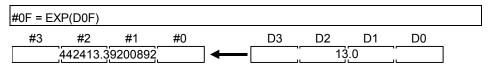
		Usable Data									
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data on which exponential operation will be performed	Floating-point type

[Functions]


- (1) Exponential operation is performed on the base e data specified with (S).
- (2) If (S) is an integer type, it is converted into a floating-point type before operation is performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which performs exponential operation of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.10 Absolute value: ABS

Format ABS(S)		Number of basic steps	2
---------------	--	-----------------------	---

[Usable data]

		Usable Data									
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data on which absolute value conversion will be	Data type of (S)

[Functions]

(1) The absolute value of the data specified with (S) is found.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the absolute value of D0F and substitutes the result to #0F

F/FS	G
0	0

7.6.11 Round-off: RND

Format RND(S)		Number of basic steps	2
---------------	--	-----------------------	---

[Usable data]

		Usable Data									
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data whose fractional portion will be rounded off	Data type of (S)

[Functions]


- (1) The rounded-off fractional portion value of the data specified with (S) is found.
- (2) If (S) is a negative number, the absolute value of (S) is found and its fractional portion is rounded off and signed.
- (3) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the rounded-off fractional portion value of D0F and substitutes the result to #0F

(2) Program which finds the rounded-off fractional portion value of D4F and substitutes the result to #0F (when D4F is a negative number)

F/FS	G
0	0

7.6.12 Round-down: FIX

Format FIX(S)		Number of basic steps	2
---------------	--	-----------------------	---

[Usable data]

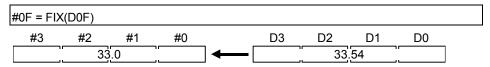
		Usable Data									
		Word device Constant									
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

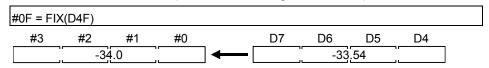
[Setting data]

Setting data	Description	Data type of result
(S)	Data whose fractional portion will be rounded down	Data type of (S)

[Functions]


- (1) The largest integer not greater than the data specified with (S) is found.
- (2) If the (S) value is positive, the absolute value will be smaller, and if it is negative, the absolute value will be greater.
- (3) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]


- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the rounded-down fractional portion value of D0F and substitutes the result to #0F

(2) Program which finds the rounded-down fractional portion value of D4F and substitutes the result to #0F (when D4F is a negative number)

F/FS	G
0	0

7.6.13 Round-up : FUP

Format FUP(S)	1	Number of basic steps	2
---------------	---	-----------------------	---

[Usable data]

	Usable Data																
		Word device Constant					Word device Constant				Wor						
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression						
(S)	_	0	0	0	0	0	0	0	0	_	_						

○ : Usable

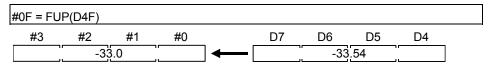
[Setting data]

Setting data	Description	Data type of result
(S)	Data whose fractional portion will be rounded up	Data type of (S)

[Functions]

- (1) The smallest integer not less than the data specified with (S) is found.
- (2) If the (S) value is positive, the absolute value will be greater, and if it is negative, the absolute value will be smaller.
- (3) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]


- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which finds the rounded-up fractional portion value of D0F and substitutes the result to #0F

(2) Program which finds the rounded-up fractional portion value of D4F and substitutes the result to #0F (when D4F is a negative number)

F/FS	G
0	0

7.6.14 BCD → BIN conversion : BIN

Format BIN(S)	Number of basic steps	2
---------------	-----------------------	---

[Usable data]

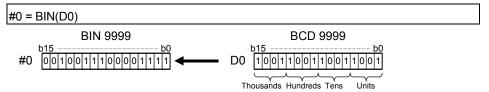
		Usable Data									
		Word device C				Word device Constant					
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	BCD data which will be converted into BIN data	Data type of (S)
	BCD data which will be convented into Bin data	(Integer type)

[Functions]


- (1) The BCD data specified with (S) is converted into BIN data.
- (2) If (S) is a 16-bit integer type, the data range is 0 to 9999.
- (3) If (S) is a 32-bit integer type, the data range is 0 to 99999999.

[Errors]

- (1) An operation error will occur if:
 - A value other than 0 to 9 is in any digit of (S); or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the BCD data of D0 into BIN data and substitutes the result to #0

F/FS	G
0	0

7.6.15 BIN → BCD conversion : BCD

Format BCD(S)		Number of basic steps	2
---------------	--	-----------------------	---

[Usable data]

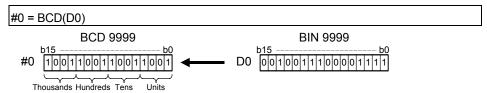
		Usable Data									
		Word device Consta					Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	DIN data which will be converted into DCD data	Data type of (S)
	BIN data which will be converted into BCD data	(Integer type)

[Functions]


- (1) The BIN data specified with (S) is converted into BCD data.
- (2) If (S) is a 16-bit integer type, the data range is 0 to 9999.
- (3) If (S) is a 32-bit integer type, the data range is 0 to 99999999.

[Errors]

- (1) An operation error will occur if:
 - The data is other than 0 to 9999 when (S) is a 16-bit integer type;
 - The data is other than 0 to 99999999 when (S) is a 32-bit integer type; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the BIN data of D0 into BCD data and substitutes the result to #0

F/FS	G
0	0

7.7 Type Conversions

7.7.1 Signed 16-bit integer value conversion : SHORT

Format	SHORT(S)	Number of basic steps	2
Tomat	0.101(1(0)	Hambor of bacic stope	_

[Usable data]

	Usable Data										
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be converted into signed 16-bit	16-bit integer type
(0)	integer value	10 bit integer type

[Functions]

- (1) The data specified with (S) is converted into a signed 16-bit integer value.
- (2) The data range of (S) is -32768 to 32767.
- (3) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
- (4) If (S) is a 16-bit integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - The (S) data is outside the range -32768 to 32767; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0L into a signed 16-bit integer value and substitutes the result to #0

F/FS	G
0	0

7.7.2 Unsigned 16-bit integer value conversion : USHORT

Format	LICHODT(C)	Number of basic stone	2
Format	USHORT(S)	Number of basic steps	2

[Usable data]

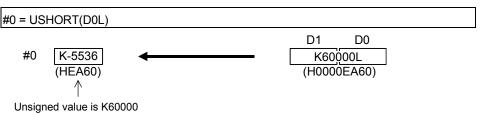
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be converted into unsigned 16-bit	16 bit intoger type
(3)	integer value	16-bit integer type

[Functions]


- (1) The data specified with (S) is converted into an unsigned 16-bit integer value.
- (2) The data range of (S) is 0 to 65535.
- (3) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
- (4) If (S) is a 16-bit integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - The (S) data is outside the range 0 to 65535; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0L into an unsigned 16-bit integer value and substitutes the result to #0

F/FS	G
0	0

7.7.3 Signed 32-bit integer value conversion: LONG

Format L	ONG(S)	Number of basic steps	2
----------	--------	-----------------------	---

[Usable data]

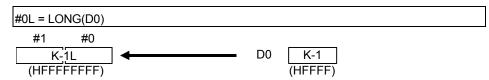
		Usable Data											
		Word device Constant				Word device Constant							
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression		
(S)	_	0	0	0	0	0	0	0	0	_	_		

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be converted into signed 32-bit	32-bit integer type
(3)	integer value	32-bit integer type

[Functions]


- (1) The data specified with (S) is converted into a signed 32-bit integer value.
- (2) The data range of (S) is -2147483648 to 2147483647.
- (3) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
- (4) If (S) is a 32-bit integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - The (S) data is outside the range -2147483648 to 2147483647; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0 into a signed 32-bit integer value and substitutes the result to #0L

F/FS	G
0	0

7.7.4 Unsigned 32-bit integer value conversion : ULONG

Format ULONG(S)		Number of basic steps	2
-----------------	--	-----------------------	---

[Usable data]

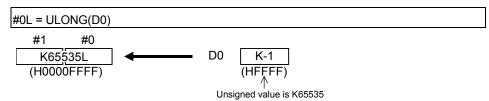
	Usable Data										
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result		
(S)	Data which will be converted into unsigned 32-bit	22 hit integer type		
(3)	integer value	32-bit integer type		

[Functions]


- (1) The data specified with (S) is converted into an unsigned 32-bit integer value.
- (2) The data range of (S) is 0 to 4294967295.
- (3) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
- (4) If (S) is a 32-bit integer type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - The (S) data is outside the range 0 to 4294967295; or
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0 into an unsigned 32-bit integer value and substitutes the result to #0L

F/FS	G
0	0

7.7.5 Signed 64-bit floating-point value conversion : FLOAT

Format FLOAT(S)		Number of basic steps	2
-----------------	--	-----------------------	---

[Usable data]

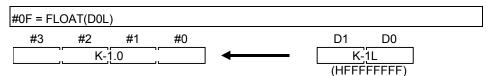
		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be converted into signed 64-bit floating-point value	64-bit floating-point type

[Functions]


- (1) The data specified with (S) is converted into a signed 64-bit floating-point value.
- (2) If (S) is a 64-bit floating-point type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0L into a signed 64-bit floating-point value and substitutes the result to #0F

F/FS	G
0	0

7.7.6 Unsigned 64-bit floating-point value conversion: UFLOAT

Format UFLOAT(S)	Number of basic steps	2
------------------	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(6)	Data which will be converted into unsigned 64-bit	64 bit floating point type
(S)	floating-point value	64-bit floating-point type

[Functions]

- (1) The data specified with (S) is converted into an unsigned 64-bit floating-point value.
- (2) If (S) is a 64-bit floating-point type, its value is returned unchanged, with no conversion processing performed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which converts the data of D0L into an unsigned 64-bit floating-point value and substitutes the result to #0F

F/FS	G
0	0

7.8 Bit Device Statuses

7.8.1 ON (Normally open contact): (None)

Format (S)	Number of basic steps 2	
------------	-------------------------	--

[Usable data]

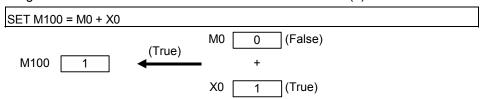
						Usable Data					
		Word device			Constant						
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	0		_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Bit device used in bit conditional expression	Logical type (true/false)

[Functions]


(1) True is returned when the bit device specified with (S) in a bit conditional expression is ON (1), or false is returned when that bit device is OFF (0).

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when either of M0 and X0 is ON (1)

F/FS	G
0	0

7.8.2 OFF (Normally closed contact):!

Format !(S)	Number of basic steps 2	
-------------	-------------------------	--

[Usable data]

						Usable Data					
		Word device			Constant						
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	0	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Bit device used in bit conditional expression	Logical type (true/false)

[Functions]

(1) True is returned when the bit device specified with (S) in a bit conditional expression is OFF (0), or false is returned when that bit device is ON (1).

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which resets M100 when M0 is OFF (0)

RST M100) = !M0						
M100	0	—	!M0	0	(True)		

F/FS	G
0	0

7.9 Bit Device Controls

7.9.1 Device set: SET

Format SET(D)=(S)		Number of basic steps	4
-------------------	--	-----------------------	---

[Usable data]

		Usable Data									
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	-	_	_	_	_	_	_	_	_	_
(S)	0	ı	_	_	_	_	_	_	_	0	0

○ : Usable

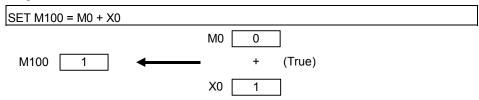
(Note-1): PX is write-disabled and cannot be used at (D). (Note-2): M2001 to M2032 cannot be used at (D).

[Setting data]

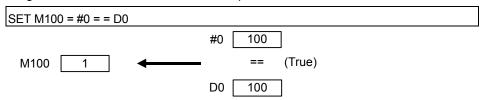
Setting data	Description	Data type of result
(D)	Bit data for device set	Dit logical type
(2)	Condition data which determines whether device	Bit logical type (true/false)
(S)	set will be performed or not	(true/raise)

[Functions]

- (1) If the data specified with (S) is true, the bit data specified with (D) is set.
- (2) (S) can be omitted.


 At this time, the format is "SET(D)" and device set is made unconditionally.
- (3) When this instruction is set as a transition condition in the last block of a transient program, whether the data specified with (S) is true or false is returned as logical type data. In this case, (S) cannot be omitted.

[Errors]


- (1) An operation error will occur if:
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when either of M0 and X0 is 1

(2) Program which sets M100 when #0 is equal to D0

(3) Program which sets Y0 unconditionally

SET 10

Y0	1

F/FS	G
0	0

7.9.2 Device reset: RST

	Format	RST(D)=(S)		Number of basic steps	4
--	--------	------------	--	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	ı	_	_	_	_	_	I	_	_	_
(S)	0	_	_	_	_	_	_		_	0	0

○ : Usable

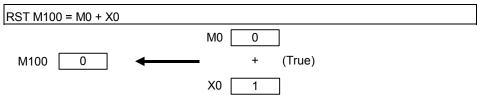
(Note-1): PX is write-disabled and cannot be used at (D). (Note-2): M2001 to M2032 cannot be used at (D).

[Setting data]

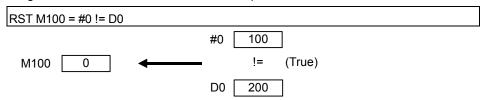
Setting data	Description	Data type of result		
(D)	Bit data for device reset	Dit logical type		
(S)	Condition data which determines whether device	Bit logical type (true/false)		
(3)	reset will be performed or not	(true/faise)		

[Functions]

- (1) If the data specified with (S) is true, the bit data specified with (D) is reset.
- (2) (S) can be omitted.


 At this time, the format is "RST(D)" and device reset is made unconditionally.
- (3) When this instruction is set as a transition condition in the last block of a transient program, whether the data specified with (S) is true or false is returned as logical type data. In this case, (S) cannot be omitted.

[Errors]


- (1) An operation error will occur if:
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which resets M100 when either of M0 and X0 is 1

(2) Program which resets M100 when #0 is equal to D0

(3) Program which resets Y0 unconditionally

RST Y0	
1101 10	

F/FS	G
0	0

7.9.3 Device output: DOUT

Format DOUT(D), (S)	Number of basic steps	4
---------------------	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	ı	ı	_	_	_	_	_	_	_	_
(S)	_	0	0	_	0	0	0	_	0	_	_

○ : Usable

(Note-1): PX and special M cannot be used at (D).

(Note-2): Range including M2000 to M2127 cannot be used at (D).

[Setting data]

Setting data	Description	Data type of result
(D)	Output destination bit data	D. C. I. I. Y
(S)	Output source data	Batch bit

[Functions]

- (1) The data specified with (S) is output to the bit data specified with (D).
- (2) Specify a multiple of 16 as the device No. of the bit data specified with (D).
- (3) If the type of (S) is a 16-bit integer type, 16 points of the (S) data, starting at the least significant bit, are output in order to the bit devices headed by the one specified with (D).
- (4) If the type of (S) is a 32-bit integer type, 32 points of the (S) data, starting at the least significant bit, are output in order to the bit devices headed by the one specified with (D).

[Errors]

- (1) An operation error will occur if:
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.
 - (D) is an indirectly specified device and its device No. is not a multiple of 16.

[Program examples]

(1) Program which outputs the data of D0 to Y0-YF

F/FS	G
0	0

7.9.4 Device input : DIN

Format DIN(D), (S)	Number of basic steps	4
--------------------	-----------------------	---

[Usable data]

	Usable Data										
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	_	0	0	_	_	_	_	_	_	_	_
(S)	0	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D)	Input destination data	Data type of (D)
(S)	Input source bit data	(Integer type)

[Functions]

- (1) The bit data specified with (S) is input to the data specified with (D).
- (2) Specify a multiple of 16 as the device No. of the bit data specified with (S).
- (3) If the type of (D) is a 16-bit integer type, 16 points of the (D) data, starting at the least significant bit, are input in order to the bit devices headed by the one specified with (S).
- (4) If the type of (D) is a 32-bit integer type, 32 points of the (D) data, starting at the least significant bit, are input in order to the bit devices headed by the one specified with (S).

[Errors]

- (1) An operation error will occur if:
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.
 - (S) is an indirectly specified device and its device No. is not a multiple of 16.

[Program examples]

(1) Program which inputs the data of X0-XF to D0

F/FS	G
0	0

7.9.5 Bit device output : OUT

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	OUT(D)=(S)	Number of basic steps	4

[Usable data]

	Usable Data Word device Constant										
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	_	_	_	_	_	_	_	_	_	_
(S)	0	_	_	_	_	_	_	_	_	0	0

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D)	Bit device for device output	Bit logical type
(S)	Condition data which determines device output	(true/false)

[Functions]

- (1) If the data specified with (S) is true, the bit data specified with (D) is set, and if the data specified with (S) is false, the bit data specified with (D) is reset.
- (2) When this instruction is set as a transition condition in the last block of a transient program, whether the data specified with (S) is true or false is returned as logical type data.
- (3) In this case, (S) cannot be omitted.

[Errors]

- (1) An operation error will occur if:
 - (D) or (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when M0 is ON (1) and program which resets M100 when M0 is OFF (0)

OUT M100 = M0	
I(J(J) I(J(J)) = I(J(J))	

(2) Program which sets M100 when M0 and M1 are both on and resets M100 except it

OUT M100 = M0 * M1		

(3) Program which sets M100 when D0 is equal to D2000 and resets M100 when D is not equal to D2000

OUT M100 = (D0 == D2000)

F/FS	G
0	0

7.10 Logical Operations

7.10.1 Logical acknowledgement : (None)

Format (S)		Number of basic steps	_
------------	--	-----------------------	---

[Usable data]

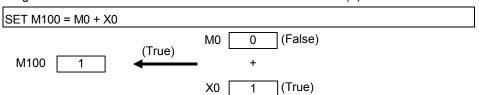
		Usable Data									
		Word device					Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	0	_	_	_	_	_	_		_	0	0

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be logically acknowledged	Logical type (true/false)

[Functions]


(1) Whether the logical type data specified with (S) is true or false is returned unchanged. (Logical acknowledgement)

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when either of M0 and X0 is ON (1)

F/FS	G
0	0

7.10.2 Logical negation:!

Format	! (S)		Number of basic steps	2
--------	-------	--	-----------------------	---

[Usable data]

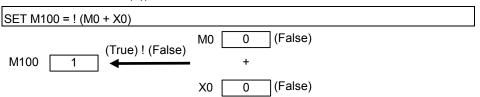
		Usable Data									
			Word device				Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	0		_		_	_	_	_	_	0	0

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Data which will be logically negated	Logical type (true/false)

[Functions]


(1) The data specified with (S) is logically negated.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when "either of M0 and X0 is not ON (1)" (when M0 and X0 are both OFF (0))

F/FS	G
0	0

7.10.3 Logical AND: *

Format (S1)*(S2)	Number of basic steps 4
------------------	-------------------------

[Usable data]

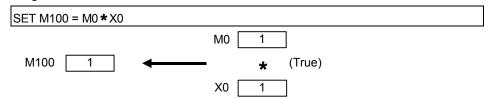
	Usable Data								1	T	,
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	0	I	_	_	ı	_	_	_	_	0	0
(S2)	0	_	_	_	_	_	_	_	_	0	0

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Determine will be ANDed	
(S2)	Data which will be ANDed	Logical type (true/false)

[Functions]


(1) The data specified with (S1) and the data specified with (S2) are ANDed.

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when M0 and X0 are both 1

F/FS	G
0	0

7.10.4 Logical OR: +

Format (S1)+(S2)	Number of basic steps 4
------------------	-------------------------

[Usable data]

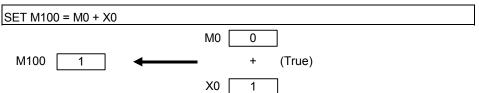
	Usable Data										
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	0	_	_	_	_	_	_	_	_	0	0
(S2)	0		_	_	_	_	_	_	_	0	0

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Determine will be ODed	Logical turns (turns/falas)
(S2)	Data which will be ORed	Logical type (true/false)

[Functions]


(1) The data specified with (S1) and the data specified with (S2) are ORed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which sets M100 when either of M0 and X0 is 1

F/FS	G		
0	0		

7.11 Comparison Operations

7.11.1 Equal to : ==

Format (S1)==(S2)		Number of basic steps	4
-------------------	--	-----------------------	---

[Usable data]

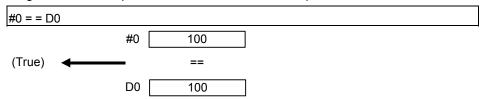
	Usable Data									I	
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Data which will be accompand	
(S2)	Data which will be compared	Logical type (true/false)

[Functions]


- (1) The data specified with (S1) and the data specified with (S2) are compared, and the result is true if they are equal.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 and D0 are equal or not

F/FS	G
0	0

7.11.2 Not equal to : !=

Format	(S1)!=(S2)	1	Number of basic steps	4
Torrida	(01):-(02)		Number of basic steps	-

[Usable data]

		-	Word	dovice		Usable Data					
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	device 64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result			
(S1)	Data which will be accompand				
(S2)	Data which will be compared	Logical type (true/false)			

[Functions]

- (1) The data specified with (S1) and the data specified with (S2) are compared, and the result is true if they are not equal.
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 and D0 are unequal or not

F/FS	G
0	0

7.11.3 Less than : <

Format (S1)<(S2) Number of basic steps	4
--	---

[Usable data]

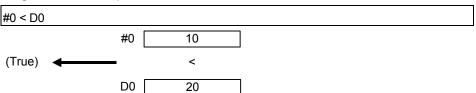
						Usable Data					_
			Word	device			Constant				
Setting data	_	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result		
(S1)	Data which will be accompand			
(S2)	Data which will be compared	Logical type (true/false)		

[Functions]


- (1) The result is true if the data specified with (S1) is less than the data specified with (S2).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 is less than D0 or not

F/FS	G
0	0

7.11.4 Less than or equal to: <=

Format (S1)<=(S2)		Number of basic steps	4
-------------------	--	-----------------------	---

[Usable data]

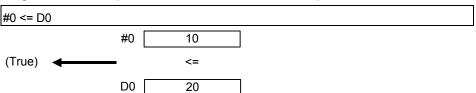
						Usable Data					_
			Word	device			Constant				
Setting data	_	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result		
(S1)	Data which will be accompand			
(S2)	Data which will be compared	Logical type (true/false)		

[Functions]


- (1) The result is true if the data specified with (S1) is less than or equal to the data specified with (S2).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 is less than or equal to D0 or not

F/FS	G
0	0

7.11.5 More than : >

Format (S1)>(S2) Number of basic steps 4	Format	(S1)>(S2)		Number of basic steps	4
--	--------	-----------	--	-----------------------	---

[Usable data]

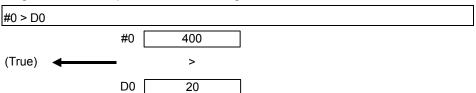
						Usable Data					_
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Data which will be accompand	
(S2)	Data which will be compared	Logical type (true/false)

[Functions]


- (1) The result is true if the data specified with (S1) is greater than the data specified with (S2).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 is greater than D0 or not

F/FS	G
0	0

7.11.6 More than or equal to: >=

Format (S1)>=(S2)		Number of basic steps	4
-------------------	--	-----------------------	---

[Usable data]

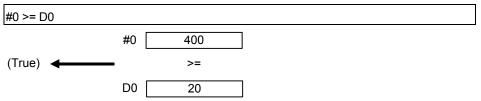
		-	Word	dovice		Usable Data					
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	device 64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	0	0	0	0	0	0	0	0	_	_
(S2)	_	0	0	0	0	0	0	0	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Data which will be accompand	
(S2)	Data which will be compared	Logical type (true/false)

[Functions]


- (1) The result is true if the data specified with (S1) is greater than or equal to the data specified with (S2).
- (2) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.

[Errors]

- (1) An operation error will occur if:
 - (S1) or (S2) is an indirectly specified device and its device No. is outside the range.

[Program examples]

(1) Program which compares whether #0 is greater than or equal to D0 or not

F/FS	G
0	0

7.12 Motion-Dedicated Functions (CHGV, CHGT)

7.12.1 Speed change request : CHGV

Format CHGV((S1), (S2))	Number of basic steps 4	
-------------------------	-------------------------	--

[Usable data]

			Word o	device		Usable Data	Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)		_	_	_	_	0	_	_	_	_	_
(S2)	_	0	0	_	_	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Axis No. to which speed change request will be given	_
(S2)	Specified speed	

[Functions]

- (1) A speed change is made in the following procedure.
 - (a) The speed changing flag (M2061 to M2092) correspond to the axis specified with (S1) is turned ON.
 - (b) The speed of the axis specified with (S1) is changed to the speed specified with (S2).
 - (c) The speed changing flag is turned OFF.
- (2) The axis No. that may be set at (S1) is within the following range.

Q172CPU(N)	Q173CPU(N)
1 to 8	1 to 32

For interpolation control, set any one of the interpolation axes. When linear interpolation control is exercised, a speed change varies as described below with the positioning speed designation method set in the servo program.

Positioning speed designation method	Operation
Combined speed designation	Speed change is made so that the combined speed becomes the speed specified with (S2).
Longest axis designation	Speed change is made so that the longest axis speed becomes the speed specified with (S2).
Reference axis speed designation	Speed change is made so that the reference axis speed becomes the speed specified with (S2).

(3) Operation varies with the sign of the specified speed set at (S2).

Sign of specified speed	Operation
Positive	Speed change
0	Temporary stop
Negative	Return

(4) The specified speed that may be set at (S2) is within the following range.

(a) Real mode

	mm		inch		degree		PLS	
	Setting range	Unit	Setting range	Unit	Setting range	Unit	Setting range	Unit
Speed change request	0 to 600000000	× 10 ⁻² mm/min	0 to 600000000	× 10 ⁻³ inch/min	0 to 2147483647	× 10 ⁻³ degree/min	0 to 10000000	PLS/s
Return request	-1 to -600000000	× 10 ⁻² mm/min	-1 to -600000000	× 10 ⁻³ inch/min	-1 to -2147483647	× 10 ⁻³ degree/min	-1 to -10000000	PLS/s

(b) Virtual mode

	PLS		
	Setting range	Unit	
Speed change request	0 to 10000000	PLS/s	
Return request	-1 to -10000000	PLS/s	

(5) The speed changed by CHGV instruction is effective only on the servo program during starting.

(6) By specifying a negative speed and making a speed change request during the start, allows the axis to start deceleration at that point and return in the opposite direction upon completion of deceleration.

The following operations by the servo instruction are shown below.

Control mode	Servo instruction	Operation
Linear control	ABS-1 INC-1 ABS-2 INC-2 ABS-3 INC-3 ABS-4 INC-4	On completion of deceleration, the axis reverses its moving direction, returns to the positioning starting point at the absolute value of the specified speed, and stops (waits) there.
Circular interpolation control	ABS circular INC circular	For circular interpolation, the axis returns in the circular path.
Fixed-pitch feed	FEED-1 FEED-2 FEED-3	
Constant-speed control	CPSTART1 CPSTART2 CPSTART3 CPSTART4	On completion of deceleration, the axis reverses its moving direction, returns to the preceding point at the absolute value of the specified speed, and stops (waits) there.
Speed control (I)	VF VR	On completion of deceleration, the axis
Speed control (II)	[VVF] [VVR]	reverses its moving direction at the absolute value of the specified speed. The axis does not stop until a stop instruction is input.
Speed/position control	VPF VPR VPSTART	The axis cannot return.
Position follow-up control	PFSTART	The speed change request is regarded as a normal speed change request.
Speed switching control	VSTART	Minor error [305] (Note) will occur and the axis
JOG operation		will be controlled at the speed limit value.
High-speed oscillation	OSC	A speed change cannot be made. Minor error [310] (Note) will occur.
Home position return	ZERO	A speed change cannot be made. Minor error [301] (Note) will occur.

(Note): Minor error [301]: A speed change was made during home position return. Minor error [305]: The setting speed is outside the range of 0 to speed limit value. Minor error [310]: A speed change was made during high-speed oscillation.

[Controls]

- (a) If a speed change is made to a negative speed, control is executed with the control mode during the start as indicated in the above table.
- (b) The returning command speed is the absolute value of a new speed.
- (c) When the axis is waiting at the return position
 - 1) Signal states (n : Axis No., m : Axis No. -1)
 - Start accept (M2000+n)
 ON

(unchanged from before

execution of CHGV instruction)

Positioning start completion (M2400+20m) ON

(unchanged from before

execution of CHGV instruction)

- Positioning completion (M2401+20m) OFF
- In-position (M2402+20m) ON
- Command in-position (M2403+20m) OFF
- Speed change "0" accepting flag (M2240+m) ON
- 2) Make a speed change to a positive speed for a restart.
- 3) Turn on the stop command to end the positioning.
- 4) A negative speed change made again will be ignored.

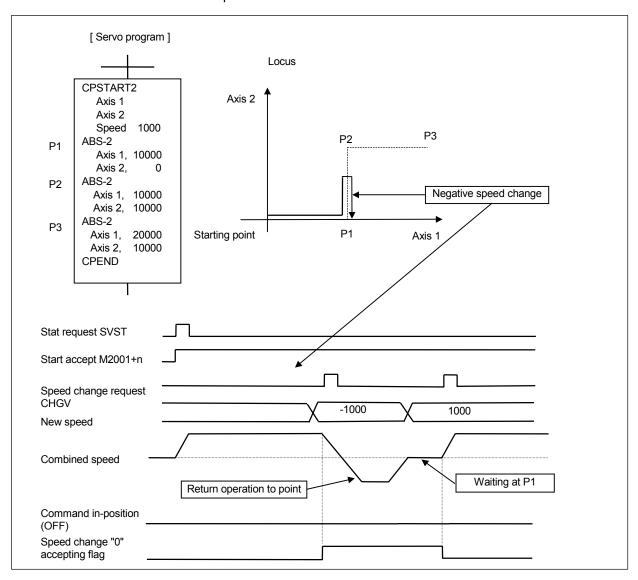
- (d) While the axis is reversion in the speed control mode
 - 1) Make a speed change to a positive speed to change the travel direction again.
 - 2) Turn ON the stop command to make a stop.
 - 3) A speed change is made in the opposite direction if a negative speed change is made again.

[Errors]

- (1) An operation error will occur and a speed change will not be made if:
 - The specified axis No. of (S1) is outside the range.
 - (S2) is an indirectly specified device and its device No. is outside the range.
- (2) A minor error will occur and a speed change will not be made if:
 - The axis specified with (S1) is home position return (Minor error: 301).
 - The axis specified with (S1) is decelerating (Minor error: 303).
- (3) A minor error will occur and the axis to be controlled at the speed limit value if:
 - The absolute value of the speed specified with (S2) is greater than the speed limit value. (Minor error: 305)

POINT

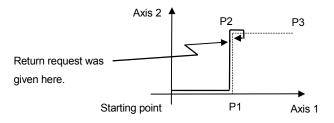
If the absolute value of a negative new speed is higher than the speed specified with the servo program during constant-speed control, return control is exercised at the speed specified in the program (speed clamp control for a speed change during constant-speed control).


At this time, an error will not occur.

[Program examples]

- (1) Program which changes the positioning speed of axis 2

 CHGV(K2,K10)
- (2) Return program which changes the positioning speed of axis 1 to a negative value CHGV(K1,K-1000)


The following operation will be performed when a return request is made in constant-speed control.

If a speed change to a negative speed is made during execution of positioning to P2 as shown above, the axis returns to P1 along the program specified locus and waits at P1.

POINT

- (1) A speed change may be invalid if it is made from when a servo program start request is made until the "positioning start completion signal" status changes to ON. When making a speed change at almost the same timing as a start, always create a program which will execute the speed change after the "positioning start completion signal" has turned ON.
- (2) A return request, which is made while the axis is at a stop waiting for FIN using the M code FIN signal waiting function during constant-speed control, will be ignored.
- (3) In the above example, if a return request is given right before P2 and the axis passes through P2 during deceleration, the axis will return to P2.
- (4) There will be a delay of time equivalent to an operation cycle at the maximum in the response time from when the CHGV instruction is executed until the speed begins to change actually.

F/FS	G
0	0

7.12.2 Torque limit value change request : CHGT

Format CHGT((S1), (S2))		Number of basic steps	4
-------------------------	--	-----------------------	---

[Usable data]

	Usable Data										
			Word o	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S1)	_	I	ı	_	_	0	_	_	_	_	_
(S2)	_	0	0	_	_	0	0	_	0	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S1)	Axis No. to which torque limit value change request will be given	_
(S2)	Specified torque limit value	

[Functions]

- (1) The torque limit value of the axis specified with (S1) is changed to the torque limit value axis specified with (S2).
- (2) In the real mode, any axis that has completed a servo startup can be changed in torque limit value any time, independently of the status, starting, stopping, servo ON or servo OFF.
- (3) The axis No. that may be set at (S1) is within the following range.

Q172CPU(N)	Q173CPU(N)
1 to 8	1 to 32

- (4) The torque limit value that may be set at (S2) is within the range 1 to 500[%].
- (5) The torque limit value specified here and the one specified in the servo program have the following relationships.

At start

At a normal start, the torque limit value is given to the servo of the start axis according to "P. torque" set in the servo program or the "torque limit value" of the specified parameter block.

For an interpolation start, the torque limit value is given to the number of axes to be interpolated.

Executing the CHGT instruction gives the preset torque limit value to only the specified axis.

Thereafter, the torque limit value given to the servo at a servo program start or JOG start is made valid only when it is lower than the torque limit value specified in CHGT.

This torque limit value clamp processing is performed per axis.

During start

- (a) If the following torque limit value has been set, it will not be changed to higher than the torque limit value specified in the CHGT instruction.
 - Torque limit value at a midway point in constant-speed control or speed switching control
 - Torque limit value at the point of switching to position control in speed/ position changing control
 - Torque limit value in speed control
- (b) The CHGT instruction accepts a torque limit value which is higher than the torque limit value set in the servo program or parameter block.
- (6) The torque limit value changed by CHGT instruction is effective only during power supply is on.

[Errors]

- (1) An operation error will occur and a torque limit value change will not be made if:
 - · The specified axis No. at (S1) is outside the range; or
 - (S2) is an indirectly specified device and its device No. is outside the range.
- (2) A minor error will occur and a torque limit value change will not be made if:
 - The torque limit value specified with (S2) is outside the range 1 to 500[%] (Minor error: 311); or
 - The CHGT instruction is executed for any axis that has not yet been started (Minor error: 312).

[Program examples]

(1) Program which changes the torque limit value of axis 2

CHGT(K2,K10)

POINT

- (1) CHGT instruction is invalid (ignored) during the virtual mode. When changing the torque limit value during operation in the virtual mode, set the "torque limit value setting device" in the output module parameter of the mechanical system program.
- (2) There will be a delay of time equivalent to an operation cycle at the maximum in the response time from when the CHGT instruction is executed until the torque limit value is changed actually.

F/FS	G
0	0

7.13 Other Instructions

7.13.1 Event task enable: El

Гаттась	FI	November of basis store	4
Format	El	Number of basic steps	

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
_	_	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

There are no setting data.

[Functions]

- (1) The execution of an event task is enabled.
- (2) This instruction is usable with a normal task only.

[Errors]

- (1) An operation error will occur if:
 - This instruction is used with other than a normal task.

[Program examples]

(1) Enables the execution of an event task.

EI .

F/FS	G
0	0

7.13.2 Event task disable: DI

Format DI	Number of basic steps	1
-----------	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
_	_	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

There are no setting data.

[Functions]

- (1) The execution of an event task is disabled.
- (2) If an external interrupt or PLC interrupt occurs after execution of the DI instruction, the corresponding event task is executed once at the execution of the EI instruction. (If two or more external interrupts or PLC interrupts occur during DI, the corresponding event task is executed only once at the execution of the EI instruction.)
- (3) During DI, a fixed-cycle event task is not executed.
- (4) The execution of an NMI task cannot be disabled.
- (5) The DI status is established at power-on or when a reset is made with the RESET/L.CLR switch.

[Errors]

- (1) An operation error will occur if:
 - This instruction is used with other than a normal task.

[Program examples]

(1) Program which disables the execution of an event task.

DI	
Л	

F/FS	G
0	0

7.13.3 No operation : NOP

1 office 1 tempor of basic stops 1	Format	NOP		Number of basic steps	1
------------------------------------	--------	-----	--	-----------------------	---

[Usable data]

						Usable Data					
			Word	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
_	_	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

There are no setting data.

[Functions]

(1) This is a no-operation instruction and does not affect the preceding operations.

[Errors]

(1) There are no operation errors for no operation: NOP.

F/FS	G
0	0

7.13.4 Block transfer: BMOV

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	BMOV(D), (S), (n)	Number of basic steps	6
	- (), (-), ()		-

[Usable data]

						Usable Data					
		Word device					Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	0	_	_	_	_	0	_	_	_	_
(S)	0	0	_	_	_	_	0	_	_	_	_
(n)	_	0	_	_	_	0	_	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D)	Transfer destination device starting No.	
(S)	Transfer source device starting No.	_
(n)	Number of words to be transferred	

[Functions]

- (1) The contents for n words from device specified with (S) are batch-transferred to the n words from device specified with (D).
- (2) Data can be transferred if the word devices of the transfer source and destination overlap.

Data are transferred from devices, starting with the one at (S), for transfer of data from devices of larger numbers to those of smaller numbers, or starting with the one at (S)+(n-1) for transfer of data from devices of smaller numbers to those of larger numbers.

(3) Specifying Nn (cam No.) at (D) or (S) enables batch-transfer of cam data. In the Motion controller, the cam data of same cam No. must already have been registered.

The number of transferred words specified with (n) should match the resolution of the specified cam No..

At cam data write

The cam data storage area is rewritten.

Transfer of data to the cam data area is also executed during cam operation.
 Be careful not to perform write while operation is being performed with the same cam No..

At cam data read

The cam data storage area is rewritten.

- · The cam data in the currently set status are read.
- (4) The word devices that may be set at (D), (S) and (n) are shown below.

Setting data	Word devices (Note-2)			В	it devi	3)	Cam No. specification		
J	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn	Nn ^(Note-1)
(D)	0	0	0	(Note-5)	0	0	(Note-4)	(Note-4)	0
(S)	0	0	0	0	0	0	(Note-4)	(Note-4)	0
(n)	0	0	0	_		_	_	_	_

(Note-1): "Nn" indicates the cam No..

(Note-2): The device No. cannot be specified indirectly.

(Note-3): Specify a multiple of 16 as the device number of bit data.

(Note-4): PX/PY cannot be set.

(Note-5): Special relays (M9000 to M9255) and dedicated devices (M2000 to M2399) cannot be set. (Note: DOUT cannot output the PX, special relays (M2000 to M9255) and dedicted devices (M2000 to M2127).)

(5) The cam No. that may be set as "Nn" is within the following range.

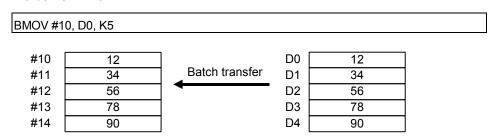
Q173CPU(N)/Q172CPU(N)
1 to 64
101 to 164
201 to 264
301 to 364

[Errors]

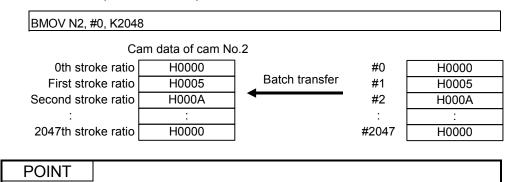
- (1) An operation error will occur if:
 - The cam data of cam No. specified with (D) or (S) are not yet registered to the Motion controller;
 - The resolution of cam No. specified with (D) or (S) differs from the number of transferred words specified with (n);
 - (S) to (S)+(n-1) is outside the device range;
 - (D) to (D)+(n-1) is outside the device range;
 - (n) is 0 or a negative number;
 - PX/PY is set in (S) to (S)+(n-1); or
 - PX/PY is set in (D) to (D)+(n-1).

when (n) specified is a word device

when (n) specified is a

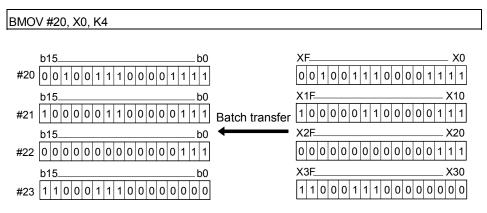

constant

- (2) When conversion is made in program editing of the SW6RN-GSV□P, an error will occur if:
 - (S) to (S)+(n-1) is outside the device range;
 - (D) to (D)+(n-1) is outside the device range;
 - (n) is 0 or a negative number;
 - PX/PY is set in (S) to (S) + (n-1).
 - PX/PY is set in (D) to (D) + (n-1).
 - (S) is a bit device and the device number is not a multiple of 16; or
 - (D) is a bit device and the device number is not a multiple of 16.


7 - 78

[Program examples]

(1) Program which batch-transfers a contents for 5 words from D0 to all data for 5 words from #10



(2) Program which batch-transfers a contents for 2048 words from #0 to the data area of cam No.2 (resolution 2048)

(3) Program which batch-transfers a contents for 4 words from X0 to all data for 4 words from #20

Cam stroke ratio is set within 0 to 7FFFH.

F/FS	G
0	0

7.13.5 Same data block transfer: FMOV

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	FMOV(D), (S), (n)	Number of basic steps	6
			· ·

[Usable data]

						Usable Data					
			Word o	device		Constant					
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	0	_	_	_	_	0	_	_	_	_
(S)	0	0	_	_	_	0	_	_	_	_	_
(n)	_	0	_	_	_	0	_	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D)	Transfer destination device starting No.	
(6)	Device No. which transfer data or data to be	
(S)	transferred are stored.	_
(n)	Number of words to be transferred	

[Functions]

- (1) The data specified with (S) or contents of word device are transferred a part for (n)words of data to the word device specified with (D).
- (2) The word devices that may be set at (D), (S) and (n) are shown below.

Cotting data	Word	devices	(Note-1)	Bit devices (Note-1), (Note-2)					
Setting data	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn	
(D)	0	0	0	(Note-4)	0	0	(Note-3)	(Note-3)	
(S)	0	0	0	0	0	0	(Note-3)	(Note-3)	
(n)	0	0	0		_	_	_	_	

(Note-1): The device No. cannot be specified indirectly.

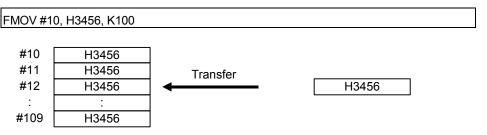
(Note-2): Specify a multiple of 16 as the device number of bit data.

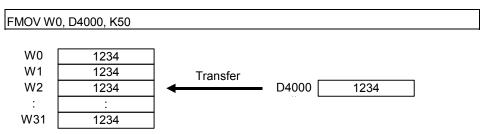
(Note-3): PX/PY cannot be set.

(Note-4): Special relays (M9000 to M9255) and dedicated devices (M2000 to M2399) cannot be set.

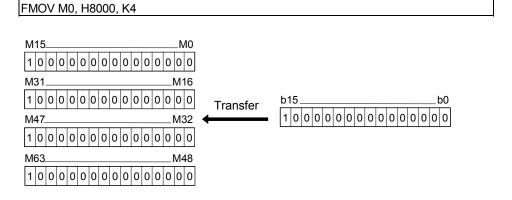
[Errors]

- (1) An operation error will occur if:
 - (D) to (D)+(n-1) is outside the device range; When (n) specified is a • (n) is 0 or a negative number; or word device
 - PX/PY is set in (D) to (D)+(n-1).


(2) When conversion is made in program editing of the SW6RN-GSV□P, an error will occur if:


- (S) is a bit device and the device number is not a multiple of 16; or
- (D) is a bit device and the device number is not a multiple of 16.

[Program examples]


(1) Program which sets 3456H to all data for 100 words from #10

(2) Program which sets a content of D4000 to all data for 50 words from W0

(3) Program which sets 8000H to all data for 4 words from M0

F/FS	G
0	0

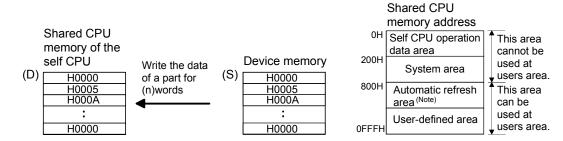
7.13.6 Write device data to shared CPU memory of the self CPU: MULTW

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	MULTW(D), (S), (n), (D1)	Number of basic steps	8

[Usable data]

						Usable Data					
			Word o	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	_	0	_	_	_	0	_	_	_	_	_
(S)	0	0	_	_	-	_	_		_	_	_
(n)	_	0	_	_	_	0	_		_	_	_
(D1)	0	_	_	_	_	_	_		_	_	_


○ : Usable

[Setting data]

Setting data	Setting data Description	
(D)	The shared CPU memory address of self CPU of	
(D)	the writing destination device. (800H to FFFH)	
(S)	First device No. which writing data are stored.	
(n)	Number of words to be written (1 to 256)	_
(D1)	Self CPU device is made to turn on by the writing	
(D1)	completion.	

[Functions]

(1) A part for (n)words of data since the device specified with (S) of the self CPU module are written to since the shared CPU memory address specified with (D) of the self CPU module. After writing completion of the device data, the complete bit device specified with (D1) turns on.

(Note): When automatic refresh is not set, it can be used as a user defined area.

And, when automatic refresh is set up, since the automatic refresh transmitting range becomes a user defined area.

(2) Do resetting of the complete bit device by the user program.

- (3) Another MULTW instruction cannot be processed until MULTW instruction is executed and a complete bit device is turned on. When MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned on, the MULTW instruction executed later becomes an error.
- (4) The word devices that may be set at (D), (S) (n) and (D1) are shown below.

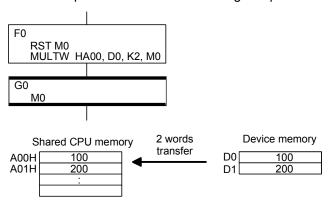
Cotting data	Word devices (Note-1)			Bit devices (Note-1), (Note-2)				
Setting data	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn
(D)	0	0	0	_	_	_	_	_
(S)	0	0	0	0	0	0	(Note-3)	(Note-3)
(n)	0	0	0	_	_	_	_	_
(D1)	_	_		0	0	0	(Note-4)	(Note-4)

(Note-1): The device No. cannot be specified indirectly.

(Note-2): Specify a multiple of 16 as the device number of bit data.

(Note-3): PX/PY cannot be set.

(Note-4): PY can be set. PX cannot be set.


(5) Adjust an executive task, the number of transfer word referring to the operation processing time so that this instruction may not obstruct the execution of the motion operation because processing time becomes long in argument to the number of words (n) to be written.

[Errors]

- (1) An operation error will occur if:
 - Number of words (n) to be written is outside the range of 1 to 256.
 - The shared CPU memory address (D) of self CPU of the writing destination device is outside the range (800H to FFFH) of the shared CPU memory address.
 - The shared CPU memory address (D) of self CPU of the writing destination device + number of words (n) to be written is outside the range (800H to FFFH) of the shared CPU memory address.
 - First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range.
 - MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned on.
 - (D1) is a write-disabled device.
 - (S) is a bit device and device number is not a multiple of 16.
 - PX/PY is set in (S) to (S)+(n-1).

[Program examples]

(1) 2 words from D0 is written in the shared CPU memory to since A00H, and transits to next step after confirmation of writing completion.

F/FS	G
0	0

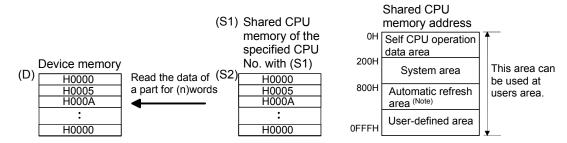
7.13.7 Read device data from shared CPU memory of the other CPU: MULTR

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	MULTR(D), (S1), (S2), (n)	Number of basic steps	7

[Usable data]

		Usable Data												
			Word o	device			Constant							
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression			
(D)	0	0	_	_	_	_	_	_	_	_	_			
(S1)	_	0	-	_	-	0	_	_	_	_	_			
(S2)	_	0	_	_	_	0		_	_	_	_			
(n)	_	0	_	_	_	0	_	_	_	_	_			


○ : Usable

[Setting data]

Setting data	Setting data Description				
(D)	First device No. which stores the reading data.				
	First I/O No. of the PLC CPU/Motion CPU which it				
(81)	will be read.				
(S1)	(CPU No.1 : 3E0H, CPU No.2 : 3E1H, CPU No.3 :				
	3E2H, CPU No.4 : 3E3H)	_			
(S2)	The shared CPU memory first address of the data				
(32)	which it will be read. (000H to FFFH)				
(n)	Number of words to be read (1 to 256)				

[Functions]

(1) A part for (n)words of data of the other CPU specified with (S1) are read from the address specified with (S2) of the shared CPU memory, and are stored since the device specified with (S2).

(Note): When automatic refresh is not set, it can be used as a user defined area.
And, when automatic refresh is set up, since the automatic refresh transmitting range becomes a user defined area.

(2) The word devices that may be set at (D), (S), (n) and (D1) are shown below.

Cotting data	Word devices (Note-1)			Bit devices (Note-1), (Note-2)					
Setting data	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn	
(D)	0	0	0	(Note-3)	0	0	(Note-4)	(Note-4)	
(S)	0	0	0	_	-	_	_	_	
(n)	0	0	0	_			_	_	
(D1)	0	0	0	_			_		

(Note-1): The device No. cannot be specified indirectly.

(Note-2): Specify a multiple of 16 as the device number of bit data.

(Note-3): Special relays (M9000 to M9255) and dedicated devices (M2000 to M2399) cannot be set.

(Note-4): PX/PY cannot be set.


- (3) When data are read normally from the target CPU specified with (S1), the reading complete flag M9216 to M9219 (CPU No.1 : M9216, CPU No.2 : M9217, CPU No.3 : M9218, CPU No.4 : M9219) corresponding to the target CPU turns on. If data cannot be read normally, the reading complete flag of the target CPU does not turn on.
- (4) Adjust an executive task, the number of transfer word referring to the operation processing time so that this instruction may not obstruct the execution of the motion operation because processing time becomes long in argument to the number of words (n) to be written.
- (5) When multiple MULTR instructions are executed to the same CPU simultaneously, the reading complete flag M9216 to M9219 turns on/as a result of MULTR that it is executed at the end.
- (6) Reset the reading complete flag (M9126 to M9219) using the user program.

[Errors]

- (1) An operation error will occur if:
 - Number of words (n) to be read is outside the range of 1 to 256.
 - The shared CPU memory first address (S2) of the data which it will be read is outside the range (000H to FFFH) of the shared CPU memory address.
 - The shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is outside the range (000H to FFFH) of the shared CPU memory address.
 - First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range.
 - Except 3E0H/3E1H/3E2H/3E3H is set at (S1).
 - The self CPU is specified with (S1).
 - · The CPU which reads is resetting.
 - · The errors are detected in the CPU which read.
 - (D) is a bit device and device number is not a multiple of 16.
 - PX/PY is set in (D) to (D)+(n-1).

[Program examples]

(1) It checks that a CPU No.1 is not resetting, 2 words is read to since #0 from the shared CPU memory C00H of CPU No.1, and transits to next step after reading completion.

F/FS	G
0	0

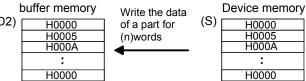
7.13.8 Write device data to intelligent function module/special function module: TO

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	TO(D1), (D2), (S), (n)	1	Number of basic steps	7
Torride	10(01), (02), (0), (11)		Number of basic steps	

[Usable data]

		Usable Data												
			Word o	device		Constant								
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression			
(D1)	_	0	_	_	_	0	_	_	_	_	_			
(D2)	_	0	_	_	_	0	_	_	_	_	_			
(S)	0	0	_	_	_	_	_	_	_	_	_			
(n)	_	0	_	_	_	0	_	_	_	_	_			


○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D1)	First I/O No. of the intelligent function module / special function module(000H to FF0H)	
(D2)	First address of the buffer memory which writes data.	_
(S)	First device No. which writing data are stored.	
(n)	Number of words to be written (1 to 256)	

[Functions]

- (1) A part for (n)words of data from device specified with (S) are written to since address specified with (D2) of the buffer memory in the intelligent function module/special function module controlled by the self CPU specified with (D1).
 - (D1) Intelligent function module/special function module buffer memory (D2) H0000

(2) First I/O No. of the module set by system setting is specified by (D1).

ylddns	Q02H CPU	Q173 CPU(N)	QX40	Q64AD	Q64DA	
Power sup module			First I/O No. No. : 00H	First I/O No. No. : 10H	First I/O No. No. : 20H	

(D1) sets 20H by the system setting when a TO instruction is executed in the D/A conversion module (Q64DA).

H0000

H000A

H0000

(3) The word devices that may be set at (D1), (D2), (S) and (n) are shown below.

Catting data	Word	Word devices (Note-1)			Bit devices (Note-1), (Note-2)				
Setting data	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn	
(D1)	0	0	0	_	_	_	_	_	
(D2)	0	0	0	_	_	_	_	_	
(S)	0	0	0	0	0	0	(Note-3)	(Note-3)	
(n)	0	0	0	_	_	_	_	_	

(Note-1): The device No. cannot be specified indirectly.

(Note-2): Specify a multiple of 16 as the device number of bit data.

(Note-3): PX/PY cannot be set.

- (4) Adjust an executive task, the number of transfer word referring to the operation processing time so that this instruction may not obstruct the execution of the motion operation because processing time becomes long in argument to the number of words (n) to be written.
- (5) The following analogue modules can be used as the control module of Motion CPU.

• Q62DA

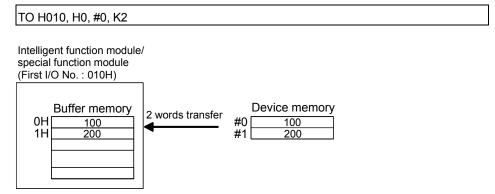
Q64AD

Q64DA

Q68ADV

Q68DAV

Q68ADI


Q68DAI

[Errors]

- (1) An operation error will occur if:
 - Number of words (n) to be written is outside the range of 1 to 256.
 - Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution.
 - Abnormalities of the intelligent function module/special function module were detected at the instruction execution.
 - I/O No.s specified with (D1) differ from the intelligent function module/special function module controlled by the self CPU.
 - The address specified with (D2) is outside the buffer memory range.
 - First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range.
 - (S) is a bit device and device number is not a multiple of 16.
 - PX/PY is set in (S) to (S)+(n-1).

[Program examples]

(1) 2 words from #0 is written to since buffer memory address of the Intelligent function module/special function module (First I/O No. : 010H).

F/FS	G
0	0

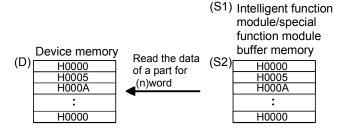
7.13.9 Read device data from intelligent function module/special function module: FROM

Refer to the Section "1.3.4" for the correspondence version of the Motion CPU and the software.

Format	FROM(D), (S1), (S2), (n)	Number of basic steps	7
	- (), (-), (-), ()		

[Usable data]

						Usable Data					
			Word o	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(D)	0	0	_	_	_	_	_	_	_	_	_
(S1)	_	0	_	_	_	0	_		_	_	_
(S2)	_	0	_	_	_	0	_		_	_	_
(n)	_	0	_	_	_	0	_	_	_	_	_


○ : Usable

[Setting data]

Setting data	Description	Data type of result
(D)	First device No. which stores the reading data.	
(S1)	First I/O No. of the intelligent function module / special function module (000H to FF0H)	
(S2)	First address of the buffer memory which it will be read.	_
(n)	Number of words to be read (1 to 256)	

[Functions]

(1) A part for (n)words of data are read from the address specified with (S2) of the buffer memory in the intelligent function module/special function module controlled by the self CPU specified with (S1), and are stored since the device specified with (S2).

(2) First I/O No. of the module set by system setting is specified by (D1).

supply	Q02H CPU	Q173 CPU(N)	QX40	Q64AD	Q64DA	
ins e			First	First	First	
Power s module			device No.	device No.	device No.	
Pov			No.: 00H	No. : 10H	No.: 20H	

(D1) sets 20H by the system setting when a TO instruction is executed in the D/A conversion module (Q64DA).

(3) The word devices that may be set at (D), (S1), (S2) and (n) are shown below.

Cotting data	Word	Word devices (Note-1)			Bit devices (Note-1), (Note-2)				
Setting data	Dn	Wn	#n	Mn	Bn	Fn	Xn	Yn	
(D)	0	0	0	(Note-3)	0	0	(Note-4)	(Note-4)	
(S1)	0	0	0	_	_	_	_	_	
(S2)	0	0	0		-	-	_	-	
(n)	0	0	0	_	_	_	_	_	

(Note-1): The device No. cannot be specified indirectly.

(Note-2): Specify a multiple of 16 as the device number of bit data.

(Note-3): Special relays (M9000 to M9255) and dedicated devices (M2000 to M2399) cannot be set.

(Note-4): PX/PY cannot be set.

- (4) Adjust an executive task, the number of transfer word referring to the operation processing time so that this instruction may not obstruct the execution of the motion operation because processing time becomes long in argument to the Number of words (n) to be read.
- (5) The following analogue modules can be used as the control module of Motion CPU.

Q62DA

Q64AD

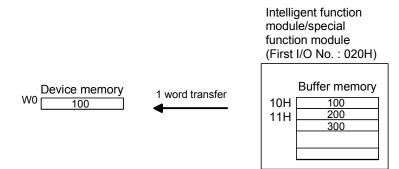
Q64DA

Q68ADV

Q68DAV

Q68ADI

Q68DAI


[Errors]

- (1) An operation error will occur if:
 - Number of words (n) to be read is outside the range of 1 to 256.
 - Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution.
 - Abnormalities of the intelligent function module/special function module were detected at the instruction execution.
 - I/O No.s specified with (S1) differ from the intelligent function module/special function module controlled by the self CPU.
 - The address specified with (S2) is outside the buffer memory range.
 - First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range.
 - (D) is a bit device and device number is not a multiple of 16.
 - PX/PY is set in (D) to (D) + (n-1).

[Program examples]

(1) 1 word is read from the buffer memory address 10H of the intelligent function module/special function module (First I/O No. : 020H), and is stored in W0.

FROM W0, H020, H10, K1

F/FS	G
_	0

7.13.10 Time to wait: TIME

Format TIME(S)	Number of basic steps	7
----------------	-----------------------	---

[Usable data]

			Word o	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
(S)	_	0	0	_	_	0	0	_	_	_	_

○ : Usable

[Setting data]

Setting data	Description	Data type of result
(S)	Waiting time (0 to 2147483647)ms	Logical type (true/false)

[Functions]

- (1) A wait state continues for the time specified with (S). The result is false when the elapsed time is less than the preset time, or the result is true and execution transits when the preset time has elapsed.
- (2) When a 16-bit integer type word device is used to specify any of 32768 to 65535ms at (S), convert it into an unsigned 16-bit integer value with USHORT. (Refer to the program example.)

[Errors]

- (1) An operation error will occur if:
 - (S) is an indirectly specified device and its device No. is outside the range.; or
 - The data (device data at indirect specification) specified with (S) is outside the range of 0 to 2147483647.

[Program examples]

(1) Program which sets a wait of 60 seconds (when constant is specified)

TIME K60000

(2) Program for a case where there may be a wait of 32768 to 65535ms for 16-bit integer type indirect designation (#0)

TIME USHORT(#0)

(3) Program which SETS (RSTs) a bit device when the specified time has elapsed

SET M100 = TIME K60000

POINT

- (1) When the waiting time setting is indirectly specified with a word device, the value imported first is used as the device value for exercising control. The set time cannot be changed if the device value is changed during a wait state.
- (2) The TIME instruction is equivalent to a conditional expression, and therefore may be set on only the last line of a transition (G) program.
- (3) When the transition program (Gn) of the same number having the TIME instruction setting is used in multiple Motion SFC programs, avoid running them at the same time. (If they are run simultaneously, the waiting time in the program run first will be illegal.)
- (4) Another transition program (Gn) can executed a time of instruction by multiple Motion SFC program simultaneously. (Multi active step less than 256.)
- (5) While time by TIME instruction waits, the wait time can not be stopped.
- (6) When using the TIME instruction, a verification error may occur, even when the Motion SFC program of SW6RN-GSV□P is equal to the Motion CPU, if a verification of Motion SFC program is executed.

F/FS	G
0	0

7.14 Comment Statement: //

Format //	Number of basic steps	_
-----------	-----------------------	---

[Usable data]

						Usable Data					
			Word o	device			Constant				
Setting data	Bit device	16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating point type (K)	Calculation expression	Bit conditional expression	Comparison conditional expression
_	_	_	_	_	_	_	_	_	_	_	_

○ : Usable

[Setting data]

There are no setting data.

[Functions]

(1) A character string from after // to a block end is a comment.

[Errors]

(1) There are no operation errors for comment: //.

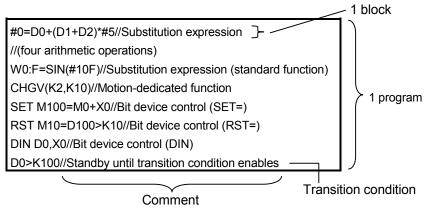
[Program examples]

(1) Example which has commented a substitution program.

D0=D1//Substitutes the D0 value (16-bit integer data) to D1.

8

8. TRANSITION PROGRAMS


8.1 Transition Programs

(1) Transition programs

- (a) Substitution operation expressions, motion-dedicated functions, bit device control commands and transition conditions can be set in transition programs.
- (b) Multiple blocks can be set in one transition program.
- (c) There are no restrictions on the number of blocks that may be set in a single transition program.
 - Note that one program is within 64k bytes.
- (d) The maximum number of characters in one block is 128.
- (e) Transition condition must be set in the last block of a transition program. Transition program is repeated until the transition condition enables, and when the transition condition has enabled, it shifts to the next step. Transition condition can be set only in the last block.
- (f) As a special transition program, a program which only no operation (NOP) is set in one block can be created.

This program is used when you want to proceed to the next step on completion of a servo program run and there are no special conditions to be set as interlocks. Refer to Section "6.9 Branches, Couplings" for details.

A transition program example is shown below.

What can be set as a transition condition in the last block are bit conditional expressions, comparison conditional expressions and device set (SET=)/device reset (RST=) which return logical data values (true/false). In the case of device set (SET=)/device reset (RST=), whether the bit or comparison conditional expression specified at (S) is true or false is a transition condition, and when the transition condition enables, device set/reset is executed and execution shifts to the next step.

Transition condition description examples are given below.

Classification	Description example
Dit and discord assessment	МО
Bit conditional expression	!M0+X10 * M100
Comparison conditional expression	(D0>K100)+(D100L!=K20L)
Device set (SET=)	SET Y0=M100
Device reset (RST=)	RST M10=D0==K100

POINT

- (1) A transition program differs from an operation control program in that a transition condition is set in the last block. Other settings are the same as those of the operation control program.
- (2) When setting device set (SET=)/device reset (RST=) in the last block as a transition condition, the bit or comparison conditional expression specified with (S) is not omissible.
- (3) Only the bit or comparison conditional expression cannot be set in other than the last block. Device set (SET=)/device reset (RST=) can be set in other than the last block.

9. MOTION CONTROL PROGRAMS

9.1 Servo Instruction List

Table 9.1 lists servo instructions used in servo programs.

Refer to Section 9.2 to 9.4 for details of the current value change control (CHGA, CHGA-E, CHGA-C).

Refer to the "Q173CPU(N)/Q172CPU(N) Motion Controller (SV13/SV22) Programming Manual (REAL MODE)" for other servo instructions.

Guide to servo instruction list Table 9.1 Guide to Servo Instruction List

						3) ↑					4) 1				5)						6)							7	()			8)
			Positionin								ing data																						
					Co	mm	non			(Circ	ular			OS	2	*1 9		F	arar	nete	r blo	ock					_	Ot	her	_		
Positioning control	Instruction symbol	Processing	Parameter block No.	Axis	Address/travel	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	Starting angle	Amplitude	Frequency	Reference axis N	Control unit	Speed limit value	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF	Number of steps
		Virtual enable	0	0	0	0	0	0	H	0	0	0	0	_	_	_	0	_	0 0		0	-	-	0	0	0	0	0	C	0	(0	
		Number of step	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2 1	1	1	1	1	1	1	1	1	2	2	2	1	2	
		Number of indirect words	1	-	2	2	1	1	1	2	2	2	1	2	2	2	1	1	2 1	1	1	1	1	2	1	*2 1/ 1(B)	_	2	*2 1(E	* 2 3) 1(B	3) 1	*2 1(B	
axis	ABS-1	Absolute 1-axis positioning	Δ	0	0	0	Δ	Δ											ΔΖ	۵ ۵	, \	Δ	Δ		Δ				Δ				
19	INC-1	Incremental 1-axis positioning	2	0	0	0	Δ	Δ											ΔΖ	Δ	Δ	Δ	Δ		Δ				Δ				4 to 17
xes	ABS-2	Absolute 2-axes linear															0	Δ	ΔΖ		Δ		$ _{\Delta}$		Δ					$^{+}$			
â										_	_	_								+													
																																	ノ
		1)																	2)														
mbe	r													D	esc	rip	tior	1															
1)	Instru	ction symbol Giv	/es	the	se	erv	o ir	nst	ruc	tio	ns	us	abl	e iı	n s	erv	о р	roç	ıran	าร.													
1)	Proce	Processing Gives the processing outlines of the servo instructions.																															
2)	1 2 (b) A	ndicates positioning) : Item which m) : Item which is A: Item which is Allows direct or indire) Direct designatio) Indirect designati • Servo program • Each setting it • For 2 word dat	ect n ion n ex	t be t w des : Se : Se cec ma	hei hei sigr et w et v utio	et (n ronat with with on eith	Da equ ion nu n w is o	ta uire (e um orc cor be	whed (excended definition)	ich Da ept cal evic	ata ax val ce d u 2 v	anr whis Notes lue (D,	not No.	ex)) , #	ect vill I). pr	ite oe (the	e se	lled	by	the	e de	<u>efa</u>	ult				,		it s	ets	5.)	
		imber of steps										nu	mb	er	of i	nst	ruc	tior	ı ste	eps	. (T	he	nu	mb	er o	of s	step	os i	is	dis	pla	yed	when a
	As	there are more set rvo program is crea ne instruction + O it	ted)							<u>u</u> n	n s	tep	<u>s</u> , :	<u>a</u> nc	d or	ne	i	<u>te</u> m	ind	crea	ise	s tl	ne i	<u>u</u> r	nbe	er c	of s	<u>st</u> e	ps	<u>b</u> y	<u>1</u> .)	
3)	As se (Th	there are more set rvo program is crea	ted.) co	mp	oris	e tl	he			nun	n s	tep)S, i	and	d or	ne	∆ i	tem	ind	crea	se	s tl	ne i	nun	nbe	er c	of s	ste	ps	by	1.)	
3) 4)	As se (Th Items	there are more set rvo program is crea ne instruction + O it	ted tem) co	mp tru	oris ctic	e tl	he	mir	nim					and	d or	ne	∆ <u>i</u>	tem	inc	crea	ise	s tl	ne i	nun	nbe	er c	of s	ste	ps	by	1.)	
	As se (The Items	there are more set rvo program is crea ne instruction + \bigcirc it common to the set	ted tem rvo) ins	mp stru	oris ctio	e tl	he	mir	nim					and	d or	ne	△ i	tem	inc	crea	ise	s tl	ne i	nun	nbe	er c	of s	ste	ps	by	1.)	
4)	As se (TI Items Items Set w	there are more set to program is create instruction + O it common to the set set in circular interset for high-speed then changing the position of the set in circular interset for high-speed then changing the position of the set in circular interset for high-speed then changing the position of the set in circular intersection.	ted tem rvo pol oso ara	ins atio	ompon son son son son son son son son son s	oris ctio sta n blo	e thons	he ig :	mii ser	nim vo	pro	ogr	an	ns																		1.)	
4) 5)	As se (Tr	there are more set rvo program is crea ne instruction + O it common to the set set in circular interset for high-speed	ted tem rvo pol osc ara	ins atio	ompones on so atio ter	ctionstand	e thons	he s ng:	mir ser efa d.)	vo ult	pro	ogr	am wl	ns	n no	ot s	et)	da	a s	et ii	n th	e s	serv	o p	oroç	gra	m t	to o	COI	ntro	ol.		struction.

(2) Servo instruction list

Table 9.2 indicates the servo instructions available for servo programs and the positioning data set in servo instructions.

Table 9.2 Servo Instruction List

									Posi	tioning	data					
						ı	C	Commo	n	1	ı		Circ	ular		
Positioning control		Instruction symbol		Processing	Parameter block No.	Axis	Address/travel value	Command speed	Dwell time	M -code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	
				Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
				Number of steps	1	1	1	1	1	1	1	1	1	1	1	
				Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
	1 axis	ABS-1	Absolute 1-axis	positioning	Δ	0	0	0	Δ	Δ						
	-	INC-1	Incremental 1-a	ixis positioning	Δ	0	0	0	Δ	Δ						
control	2 axes	ABS-2	Absolute 2-axes	s linear interpolation	Δ	0	0	0	Δ	Δ						
olation	2 a	INC-2	Incremental 2-s	xes linear interpolation	Δ	0	0	0	Δ	Δ						
Linear interpolation control	axes	ABS-3	Absolute 3-axes	s linear interpolation	Δ	0	0	0	Δ	Δ						
Linear	8	INC-3	Incremental 3-a	xes linear interpolation	Δ	0	0	0	Δ	Δ						
	4 axes	ABS-4	Absolute 4-axes	s linear interpolation	Δ	0	0	0	Δ	Δ						
	4	INC-4	Incremental 4-a	xes linear interpolation	Δ	0	0	0	Δ	Δ						
	Auxiliary point- specified	ABS	interpolation	ry point-specified circular	Δ	0	0	0	Δ	Δ		0				
	Aux po spec	INC 🕾	Incremental aux interpolation	kiliary point-specified circular	Δ	0	0	0	Δ	Δ		0				
_		ABS⊂◀		-specified circular s than CW 180°	Δ	0	0	0	Δ	Δ			0			
contra		ABS()	interpolation CV		Δ	0	0	0	Δ	Δ			0			
Circular interpolation control	pe	ABS⊶	interpolation les	-specified circular s than CCW 180°	Δ	0	0	0	Δ	Δ			0			
ır interp	specifie	ABS	interpolation CC	-specified circular CW 180° or more	Δ	0	0	0	Δ	Δ			0			
Circula	Radius-specified	INC <	interpolation les	lius-specified circular s than CW 180°	Δ	0	0	0	Δ	Δ			0			
	ď	INC ()	interpolation CV		Δ	0	0	0	Δ	Δ			0			
		INC 🕒		lius-specified circular s than CCW 180°	Δ	0	0	0	Δ	Δ			0			
		INC 🕒		lius-specified circular CW 180° or more	Δ	0	0	0	Δ	Δ			0			

		1		1						Position	ning da	ta	1								
	OSC		*1				Para	meter	block	ı	1				1		Others	i I	ı	1 1	
Starting angle	Amplitude	Frequency	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF		Number of steps
_	_	_	0	_	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0		
1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	2		
2	2	2	1	1	2	1	1	1	1	1	2	1	*2 1/ 1(B)	_	2	*2 1(B)	*2 1(B)	1	*2 1(B)		
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					4 to 17
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
			0	Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					5 to 20
			0	Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
			0	Δ.	Δ	Δ	Δ .		Δ.	Δ.						Δ					7 to 21
			0	Δ	Δ	Δ	Δ		Δ	Δ		Δ				Δ					
			0 0	Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					8 to 22
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					7 to 22
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ		_		Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					6 to 21
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					0 10 21
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ					

 $[\]bigcirc$: Must be set. $\ \triangle$: Set if required.

^{*1 :} Only reference axis speed specification.
*2 : (B) indicates a bit device.

Table 9.2 Servo Instruction List (continued)

				0.2 001 vo mondo			`			tioning	data					
							C	Commo	n				Circ	ular		
Positioning control		Instruction symbol		Processing	Parameter block No.	Axis	Address/travel value	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	
				Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
				Number of steps	1	1	1	1	1	1	1	1	1	1	1	
				Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
tion	ified	ABS ∕.◀	Absolute centra interpolation CV	l point-specified circular V	Δ	0	0	0	Δ	Δ				0		
r interpola control	nt-spec	ABS ∵₄	Absolute centra interpolation CC	l point-specified circular CW	Δ	0	0	0	Δ	Δ				0		
Circular interpolation control	Central point-specified	INC ∕.◀	Incremental cer interpolation CV	ntral point-specified circular V	Δ	0	0	0	Δ	Δ				0		
Circ	Cent	INC 🍑	Incremental cer interpolation CC	ntral point-specified circular	Δ	0	0	0	Δ	Δ				0		
	Auxiliary point- specified	ABH∠~	Absolute auxilia interpolation	ry point- specified helical	Δ	0	0	0	Δ	Δ		0			0	
	Auxi	INH 🗸	Incremental aux interpolation	xiliary point- specified helical	Δ	0	0	0	Δ	Δ		0			0	
		ABH◯◀	Absolute radius interpolation les	-specified helical s than CW 180°	Δ	0	0	0	Δ	Δ			0		0	
		ABH 🗼	Absolute radius interpolation CV	-specified helical V 180° or more	Δ	0	0	0	Δ	Δ			0		0	
_	<u>8</u>	ABH✓		-specified helical s than CCW 180°	Δ	0	0	0	Δ	Δ			0		0	
Helical interpolation control	Radius-specified	ABH○	Absolute radius interpolation CC	-specified helical CW 180° or more	Δ	0	0	0	Δ	Δ			0		0	
olation	adius-	INH (lius-specified helical s than CW 180°	Δ	0	0	0	Δ	Δ			0		0	
interpo	l ez	INH 🗪	Incremental rad interpolation CV	lius-specified helical V 180° or more	Δ	0	0	0	Δ	Δ			0		0	
Helical		INH 🕒	Incremental rad interpolation les	lius-specified helical s than CCW 180°	Δ	0	0	0	Δ	Δ			0		0	
		INH 🕩		lius-specified helical CW 180° or more	Δ	0	0	0	Δ	Δ			0		0	
	yified	ABH∕◀	Absolute centra interpolation CV	l point-specified helical V	Δ	0	0	0	Δ	Δ				0	0	
	nt-spec	ABH∵₄	Absolute centra interpolation CC	l point-specified helical	Δ	0	0	0	Δ	Δ				0	0	
	Central point-specified	INH 🖪	Incremental cer interpolation CV	ntral point-specified helical V	Δ	0	0	0	Δ	Δ				0	0	
	Cent	INH 🍛	Incremental cer interpolation CC	ntral point-specified helical	Δ	0	0	0	Δ	Δ				0	0	

										Positio	ning dat	а									
	OSC		*1				Para	ameter	block	1					ı		Others				
Starting angle	Amplitude	Frequency	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF		Number of steps
_	_	_	0	_	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0		
1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	2		
2	2	2	1	1	2	1	1	1	1	1	2	1	*2 1/ 1(B)	_	2	*2 1(B)	*2 1(B)	1	*2 1(B)		
				Δ	\triangle	Δ	Δ	\triangle	Δ	Δ	\triangle	Δ				\triangle					
				Δ	\triangle	Δ	Δ	\triangle	\triangle	Δ	Δ	Δ				Δ					7 to 22
				\triangle	\triangle	Δ	Δ	\triangle	\triangle	Δ	\triangleleft	Δ				\triangle					7 10 22
				Δ	\triangleright	\triangle	\triangleright	\triangleright	Δ	Δ	\triangleright	Δ				Δ					
				\triangle	\triangleleft	Δ	Δ	\triangle	\triangle	Δ		Δ				\triangleleft					10 to 27
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					10 to 21
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					9 to 26
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					91020
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					10 to 27
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					10 10 21
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					

 $[\]bigcirc$: Must be set. \triangle : Set if required. *1: Only reference axis speed specification. *2: (B) indicates a bit device.

Table 9.2 Servo Instruction List (continued)

ī			. 45.0	9.2 36170 11151140			. (00									
								·		tioning	data		0:			
					ō,	Axis		Commo		de	en	int		ular <u>=</u>	Pitch	
Positioning control		Instruction symbol		Processing	Parameter block No.	S. A.	Address/travel value	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pit	
				Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
				Number of steps	1	1	1	1	1	1	1	1	1	1	1	
				Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
feed	1 axis	FEED-1	1-axis fixed-pitc	h feed start	Δ	0	0	0	Δ	Δ						
Fixed-pitch feed	2 axes	FEED-2	2-axes linear infixed-pitch feed	terpolation start	Δ	0	0	0	Δ	Δ						
Fixe	3 axes	FEED-3	3-axes linear infixed-pitch feed		Δ	0	0	0	Δ	Δ						
(j) lo	Forward	VF	Speed control (rotation start	l) forward	Δ	0		0		Δ						
Speed control (I)	Reverse rotation	VR	Speed control (rotation start	I) reverse	Δ	0		0		Δ						
Speed control (II)	Forward rotation	VVF	Speed control (rotation start	II) forward	Δ	0		0		Δ	Δ					
Spe	Reverse rotation	VVR	Speed control (rotation start	II) reverse	Δ	0		0		Δ	Δ					
ition	Forward rotation	VPF	Speed-position forward rotation	control start	Δ	0	0	0	Δ	Δ	Δ					
Speed-position control	Reverse rotation	VPR	Speed-position reverse rotation		Δ	0	0	0	Δ	Δ	Δ					
Spe	Restart	VPSTART	Speed-position	control restart		0										
		VSTART	Speed-switching	g control start	Δ											
		VEND	Speed-switching	g control end												
_		ABS-1	Speed-switching	a control and		0	0	0	Δ	Δ	Δ					
g contro		ABS-2	point address	y will of End		0	0	0	Δ	Δ	Δ					
tching		ABS-3				0	0	0	Δ	Δ	Δ					
Speed-switching control		INC-1	Troughtee	to annual quitables		0	0	0	Δ	Δ	Δ					
Spe		INC-2	control end poir	to speed-switching tt		0	0	0	Δ	Δ	Δ					
		INC-3				0	0	0	Δ	Δ	Δ					
		VABS	Speed-switching absolute specifi	g point cation			0	0		Δ	Δ					
		VINC	Speed-switching incremental spe				0	0		Δ	Δ					

										Positio	ning da	ta									
	OSC		*1					ameter		1	I			I	1		Others		I	, , ,	
Starting angle	Amplitude	Kouenbau	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF		Number of steps
_	_	_	0	_	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0		
1	1	1	1	1	2	1	1	1	1	1	1	1	1 *2	1	2	2	2	1	2		
2	2	2	1	1	2	1	1	1	1	1	2	1	1/ 1(B)	_	2	*2 1(B)	*2 1(B)	1	*2 1(B)		
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					4 to 17
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					5 to 19
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					7 to 21
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					3 to 15
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					
					Δ	Δ	Δ		Δ	Δ		Δ.				Δ					3 to 16
					Δ	Δ	٨	<u>^</u>	٨	Δ		Δ				٨					
					Δ	Δ	Δ	Δ	Δ			Δ				Δ					4 to 18
																Δ					2 to 4
				Δ	Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ					1 to 13
																					1
																Δ					4 to 9
																Δ					5 to 10
																Δ					7 to 12
																Δ					4 to 9
																Δ					5 to 10
																Δ					7 to 12
																					4 to 6

 $[\]bigcirc$: Must be set. \triangle : Set if required. *1: Only reference axis speed specification. *2: (B) indicates a bit device.

Table 9.2 Servo Instruction List (continued)

								Posi	tioning	data					
						(Commo					Circ	ular		
Positioning control	Instruction symbol		Processing	Parameter block No.	Axis	Address/travel value	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	
			Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
			Number of steps	1	1	1	1	1	1	1	1	1	1	1	
			Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
Position follow-up control	PFSTART	Position follow-	up control start	Δ	0	0	0		Δ						
	CPSTART1	1-axis constant	-speed control start	Δ	0		0								
	CPSTART2	2-axes constan	t-speed control start	Δ	0		0								
	CPSTART3	3-axes constan	t-speed control start	Δ	0		0								
	CPSTART4	4-axes constan	t-speed control start	Δ	0		0								
	ABS-1				0	0			Δ	Δ					
	ABS-2				0	0			Δ	Δ					
	ABS-3				0	0			Δ	Δ					
	ABS-4				0	0			Δ	Δ					
_	ABS_				0	0			Δ	Δ	0				
contrc	ABS⊂◀	Constant-speed absolute specifi	d control passing point cation		0	0			Δ	Δ		0			
pee	ABS()	aboolate opcom	oddon		0	0			Δ	Δ		0			
Constant-speed control	ABS⊶				0	0			Δ	Δ		0			
onste	ABS♥	1			0	0			Δ	Δ		0			
O	ABS∕⊶				0	0			Δ	Δ			0		
	ABS ⊶	1			0	0			Δ	Δ			0		
	ABH_Z~				0	0			Δ	Δ	0			0	
	ABH⊂◀	1			0	0			Δ	Δ		0		0	
	ABH()	1			0	0			Δ	Δ		0		0	
	ABH✓◀	Constant-speed helical absolute	d control passing point		0	0			Δ	Δ		0		0	
	ABH⊜•		- Specification		0	0			Δ	Δ		0		0	
	ABH <i>∕</i> ,◀	1			0	0			Δ	Δ			0	0	
	ABH∵₄	1			0	0			Δ	Δ			0	0	

									ı	Position	ning dat	a								
	OSC		*1		1		Para	ameter	block	П							Others			
Starting angle	Amplitude	Frequency	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF	Number of steps
_	_	_	0	_	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0	
1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	2	<u> </u>
2	2	2	1	1	2	1	1	1	1	1	2	1	*2 1/ 1(B)	_	2	*2 1(B)	*2 1(B)	1	*2 1(B)	
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ				4 to 16
					Δ	Δ	Δ	Δ	Δ	Δ		Δ				Δ		Δ		3 to 15
				Δ	\triangle	\triangleright	\triangleright	\triangle	\triangle	Δ	Δ	Δ				\triangle		Δ		3 to 17
				Δ	Δ	Δ.	Δ.	<u> </u>	<u> </u>	Δ	Δ	Δ				Δ.		Δ		4 to17
				Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ				Δ		Δ		0.1.10
															Δ		Δ		Δ	2 to 10
															Δ		Δ		Δ	3 to 11
															Δ		Δ		Δ	4 to 12
															Δ		Δ		Δ	5 to 13
															Δ		Δ		Δ	5 to 14
															Δ		Δ		Δ	_
															Δ		Δ		Δ	4 to 13
															Δ		Δ		Δ	_
															Δ		Δ		Δ	
															Δ		Δ		Δ	5 to 14
															Δ		Δ		Δ	
															Δ		Δ		Δ	9 to 14
															Δ		Δ		Δ	
															Δ		Δ		Δ	8 to 13
															Δ		Δ		Δ	0 10 13
															Δ		Δ		Δ	
															Δ		Δ		Δ	04:44
															Δ		Δ		Δ	9 to 14
																				 <u> </u>

 $[\]bigcirc$: Must be set. \triangle : Set if required. *1: Only reference axis speed specification. *2: (B) indicates a bit device.

Table 9.2 Servo Instruction List (continued)

									tioning	data					
					1	C	Commo	n	1	1		Circ	cular		
Positioning control	Instruction symbol		Processing	Parameter block No.	Axis	Address/travel value	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	
			Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
			Number of steps	1	1	1	1	1	1	1	1	1	1	1	
			Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
	INC-1				0	0			Δ	Δ					
	INC-2				0	0			Δ	Δ					
	INC-3				0	0			Δ	Δ					
	INC-4				0	0			Δ	Δ					
	INC 📉				0	0			Δ	Δ	0				
	INC <	Constant-speed incremental spe	control passing point		0	0			Δ	Δ		0			
	INC 🕟	- moromonian ope			0	0			Δ	Δ		0			
<u> </u>	INC 🗸				0	0			Δ	Δ		0			
d cont	INC 🕒				0	0			Δ	Δ		0			
-spee	INC 🖪				0	0			Δ	Δ			0		
Constant-speed control	INC ☑	1			0	0			Δ	Δ			0		
So	INH 📉				0	0			Δ	Δ	0			0	
	INH <◀				0	0			Δ	Δ		0		0	
	INH 🗪	1			0	0			Δ	Δ		0		0	
	INH ✓	Constant-speed helical incremen	control passing point		0	0			Δ	Δ		0		0	
	INH 🕩		spoomodion		0	0			Δ	Δ		0		0	
	INH ∕.◀	1			0	0			Δ	Δ			0	0	
	INH 🎿	1			0	0			Δ	Δ			0	0	
	CPEND	Constant-speed	I control end					Δ							

										Positio	ning dat	a									
	OSC		*1				Para	meter	block								Others				
Starting angle	Amplitude	Frequency	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF		Number of steps
_	_	_	0	_	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0		
1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	2		
2	2	2	1	1	2	1	1	1	1	1	2	1	*2 1/ 1(B)	ı	2	*2 1(B)	*2 1(B)	1	*2 1(B)		
															Δ		Δ		Δ		2 to 10
															Δ		Δ		Δ		3 to 11
															Δ		Δ		Δ		4 to 12
															Δ		Δ		Δ		5 to 13
															Δ		Δ		Δ		5 to 14
															Δ		Δ		Δ		
															Δ		Δ		Δ		4 to 13
															Δ		Δ		Δ		. 10 .0
															Δ		Δ		Δ		
															Δ		Δ		Δ		5 to 14
															Δ		Δ		Δ		310 14
															Δ		Δ		Δ		9 to 14
															Δ		Δ		Δ		
															Δ		Δ		Δ		8 to 13
															Δ		Δ		Δ		8 to 13
															Δ		Δ		Δ		
															Δ		Δ		Δ		9 to 14
															Δ		Δ		Δ		0 10 17
																					1 to 2

 $[\]bigcirc$: Must be set. \triangle : Set if required. *1: Only reference axis speed specification. *2: (B) indicates a bit device.

Table 9.2 Servo Instruction List (continued)

						-		Posi	tioning	data					
						C	Commo	n				Circ	ular		
Positioning control	Instruction symbol		Processing	Parameter block No.	Axis	Address/travel value	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Pitch	
			Virtual enable	0	0	0	0	0	0	_	0	0	0	0	
			Number of steps	1	1	1	1	1	1	1	1	1	1	1	
			Number of indirect words	1	_	2	2	1	1	1	2	2	2	1	
. d +t (FOR-TIMES														
on of on of on of on of on of on	FOR-ON	Repeat range s	tart setting												
Repetition of same control (used in speed switching control, constant-speed control)	FOR-OFF	=													
Se se (us cont	NEXT	Repeat range e	nd setting												
Simultaneous start	START	Simultaneous s	tart												
Home position retum	ZERO	Home position r	return start		0										
High speed oscillation	OSC	High-speed osc	illation	Δ	0				Δ						
en In	CHGA	Servomotor/Virt Current Value C	ual Servomotor Shaft Change		0	0									
Current Value change	CHGA-E	Synchronous En	ncoder Shaft Current Value		0	0									
n O	CHGA-C	Cam Shaft With Value Change	nin-One-Revolution Current Control		0	0									

									-	Position	ning dat	а									
	OSC		*1				Para	ameter	block								Others				ļ
Starting angle	Amplitude	Frequency	Reference axis No.	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Repeat condition	Program No.	Command speed (constant speed)	Cancel	Skip	FIN acceleration/deceleration	WAIT-ON/OFF		Number of steps
1	1	1	0	_	0	0	0	0	ı	ı	0	0	0	0	0	0	0	0	0		ļ
1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	2		ļ
2	2	2	1	1	2	1	1	1	1	1	2	1	*2 1/ 1(B)	-	2	*2 1(B)	*2 1(B)	1	*2 1(B)		
													0								
													0								2
													0								
																					3
														0							2 to 3
																					2
0	0	0							Δ							Δ					5 to 10
																					3

 $[\]bigcirc$: Must be set. \triangle : Set if required. *1: Only reference axis speed specification. *2: (B) indicates a bit device.

9.2 Servomotor/Virtual Servomotor Shaft Current Value Change

The current value of the specified axis is changed in the real mode.

The current value of the specified virtual servomotor shaft is changed in the virtual mode.

									lten	กร ร	set	on	per	iph	era	l de	vic	е							1
				Common Circular Parameter block Others									ers												
Servo instruction	Positioning method	Number of Control axes	Parameter block No.	Axis	Address/travel	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Cancel	FIN acceleration/deceleration	Speed change	
CHGA	Absolute	1		0	0																			Disable	

○ : Item which must be set

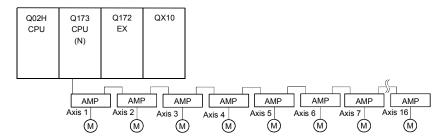
 \triangle : Item which is set when required

[Controls]

Control using CHGA instruction

- Executing the CHGA instruction changes the current value in the following procedure.
 - (a) The start accept flag (M2001 to M2008/M2001 to M2032) corresponding to the specified axis is turned on.
 - (b) The current value of the specified axis is changed to the specified address.
 - (c) Start accept flag is turned off at completion of the current value change.
- (2) The current value of the specified axis is changed in the real mode.
- (3) The current value of the specified virtual servo-motor shaft is changed in the virtual mode.
- (4) The used axis No. can be set within the following range.

Q172CPU(N)	Q173CPU(N)
Axis 1 to 8	Axis 1 to 32

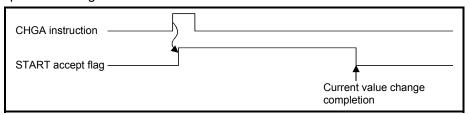

(5) The address which made the current value change by CHGA instruction is valid on the power supply turning on.

[Program example]

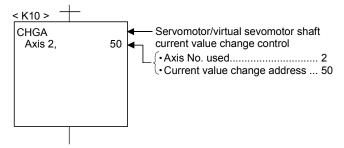
A program which made the current value change control in the real mode is described as the following conditions.

(1) System configuration

The current value change control of axis 2 is executed.



(2) The current value change control conditions


(a) The current value change control conditions are shown below.

Item	Setting
Servo program No.	10
Control axis No.	2
Current value change address	50

(3) Operation timing

(4) Servo program

POINT

- (1) Current value changing instructions
- When PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF, a minor error (Note) [100] occurs and a current value change is not made.
- This change is made only during a stop. If a current value change is made while the specified axis is starting, a minor error (Note) [101] (start accept signal of the corresponding axis is ON) occurs and the current value change is not made.
- If the servo of the corresponding axis is not READY, a major error (Note) [1004] occurs and the current value change is not made.
- If the corresponding axis is in a servo error, a major error (Note) [1005] occurs and the current value change is not made.

For SV22

- Set the current value change program of the virtual servomotor shaft within the virtual mode program No. range set in "program mode assignment".
- Set the current value change program of the servomotor (output) shaft within the real mode program No. range.
- If a virtual servomotor shaft current value change is executed in the real mode, a servo program setting error (Note) [903] occurs and the current value change is not made.
- If a servomotor (output) shaft current value change is executed in the virtual mode, a servo program setting error (Note) [904] occurs and the current value change is not made.
- If a current value change is made during mode changing, a servo program setting error ^(Note) [907] (real → virtual changing) or [908] (virtual → real changing) occurs and the current value change is not made.

(Note): Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22)

Programming Manual (REAL MODE)"/"Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)" for minor error, major error and servo program setting error.

9.3 Synchronous Encoder Shaft Current Value Change Control (SV22 only)

The current value of the specified synchronous encoder shaft is changed in the virtual mode.

			Items set on peripheral device											7											
				Common Circular Parameter block Others																					
Servo instruction	Positioning method	Number of Control axes	Parameter block No.	Axis	Address/travel	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque limit value	Deceleration processing at stop input	Allowable error range for circular interpolation	S-curve ratio	Cancel	FIN acceleration/deceleration	Speed change	
CHGA-E	Absolute	1		0	0																			Disable	

○ : Item which must be set

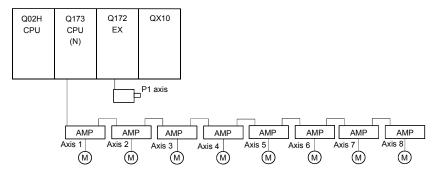
 \triangle : Item which is set when required

[Controls]

Control using CHGA-E instruction

- (1) Executing the CHGA-E instruction changes the current value of the synchronous encoder shaft in the following procedure.
 - (a) The synchronous encoder shaft current value changing flag (M2101 to M2112) corresponding to the specified synchronous encoder shaft is turned on.
 - (b) The current value of the specified synchronous encoder shaft is changed to the specified address.
 - (c) The synchronous encoder shaft current value changing flag is turned off at completion of the current value change.
- (2) The used axis No. can be set within the following range.

Q172CPU(N)	Q173CPU(N)
Axis 1 to 8	Axis 1 to 12

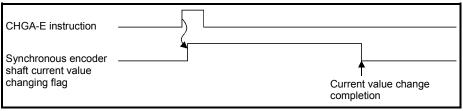

(3) The address which made the current value change by CHGA-E instruction is valid after also the power supply turned off.

[Program example]

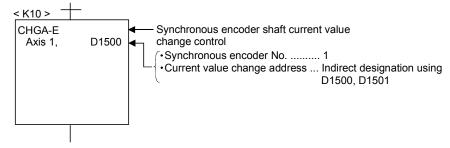
A program which made the current value change control of the synchronous encoder shaft is described as the following conditions.

(1) System configuration

The current value change control of the synchronous encoder shaft P1 is executed.



(2) The current value change control conditions


(a) The current value change control conditions are shown below.

Item	Setting
Servo program No.	10
Synchronous encoder No.	1
Ourselve share address	Indirect designation
Current value change address	using D1500, D11501

(3) Operation timing

(4) Servo program

POINT

- (1) Synchronous encoder current value changing instructions
 - The current value change of the synchronous encoder is executed if operation is being performed in the virtual mode (during pulse input from the synchronous encoder).
 - If the current value is changed, the feed current value of the synchronous encoder continues from the new value.
 - The current value change of the synchronous encoder does not affect the current value of the output module.
 - Set the current value change program of the synchronous encoder shaft program within the virtual mode program No. range set in "program mode assignment".
 - When PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF, a minor error (Note) [100] occurs and a current value change is not made.
 - If a synchronous encoder current value change is executed in the real mode, a servo program setting error (Note) [903] or [905] occurs and the current value change is not made. ([903] when the current value change servo program is set to within the virtual mode program No. range, or 905 when it is set to within the real mode program No. range.)
 - If a current value change is made during mode changing, a servo program setting error ^(Note) [907] (real → virtual changing) or [908] (virtual → real changing) occurs and the current value change is not made.

(Note): Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22)
Programming Manual (REAL MODE)"/"Q173CPU(N)/Q172CPU(N) Motion
controller (SV22) Programming Manual (VIRTUAL MODE)" for minor error,
major error and servo program setting error.

9.4 Cam Shaft Within-One-Revolution Current Value Change Control (SV22 only)

The current value of the specified cam shaft within-one-revolution is changed in the virtual mode.

									Iten	ทร ร	set	on	per	iph	era	l de	vic	е						Speed	
					Co	mm	on			Ci	rcul	ar			Pa	ram	eter	blo	ck			Oth	ers	change	
Servo instruction	Positioning method	Number of Control axes	Parameter block No.	Axis	Address/travel	Command speed	Dwell time	M-code	Torque limit value	Auxiliary point	Radius	Central point	Control unit	Speed limit value	Acceleration time	Deceleration time	Rapid stop deceleration time	Torque	eceler	Allowable error range for circular interpolation	S-curve ratio	Cancel	FIN acceleration/deceleration		
CHGA-C	Absolute	1		0	0																			Disable	

○ : Item which must be set

 \triangle : Item which is set when required

[Controls]

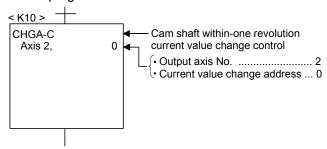
Control using CHGA-C instruction

- (1) Executing the CHGA-C instruction changes the within-one-revolution current value of the specified cam shaft to the address.
- (2) The cam shaft may be starting.
- (3) The used axis No. can be set within the following range.

Q172CPU(N)	Q173CPU(N)
Axis 1 to 8	Axis 1 to 32

(4) The address which made the current value change by the CHGA-C instruction is valid after also the power supply turned off.

[Program example]


A program which made the current value change control of the cam shaft within-onerevolution current value change is described as the following conditions.

(1) Current value change control conditions

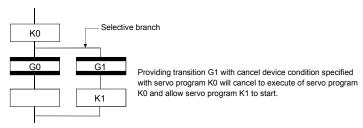
(a) The current value change control conditions are shown below.

Item	Setting
Servo program No.	10
Output axis No.	2
Current value change address	0

(2) Servo program

POINT

- (1) Cam shaft within-one revolution current value changing instructions
 - If a new within-one revolution current value is outside the range 0 to (one-revolution pulse count 1), a minor error (Note) [6120] occurs and current value change is not.
 - Set the current value change program the cam shaft within-one-revolution within the virtual mode program No. range set in "program mode assignment".
 - When PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF, a minor error (Note) [100] occurs and a current value change is not made.
 - If the cam shaft within-one-revolution current value change is executed in the real mode, a servo program setting error ^(Note) [903] or [905] occurs and the current value change is not made. ([903] when the current value change servo program is set to within the virtual mode program No. range, or 905 when it is set to within the real mode program No. range.)
 - If a current value change is made during mode changing, a servo program setting error ^(Note) [907] (real → virtual changing) or [908] (virtual → real changing) occurs and the current value change is not made.


(Note): Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE)"/"Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)" for minor error, major error and servo program setting error.

9.5 Programming Instructions

9.5.1 Cancel • start

When a cancel start has been set in the setting items of the servo program which was started at the motion control step of the Motion SFC program, the cancel of the running servo program is valid but the servo program specified to start after a cancel is ignored, without being started.

The following example shows the Motion SFC program which exercises control equivalent to a cancel start.

9.5.2 Indirect designation using motion devices

- (1) The motion registers #0 to #8191 cannot be used to make indirect specification in the mechanical system programs. The motion register values are used in the servo or mechanical system programs, substitutes them to data registers (D)/link registers (W).
- (2) The coasting timer (FT) cannot used to make indirect specification in the servo program and mechanical system program.

10. MOTION DEVICES

The motion registers (#0 to #8191) and coasting timer (FT) are available as Motion CPU-dedicated devices.

They can be used in operation control (F/FS) programs or transition (G) programs.

10.1 Motion Registers (#0 to #8191)

Motion device	Item	Specifications
	Number of points	8192 points (#0 to #8191)
	Data size	16-bit/point
Motion register (#)	Latch	Only a user device is latched.
Wollon register (#)	Laten	(All points are cleared by latch clear operation.)
	Usable tasks	Normal, event and NMI
	Access	Read and write enabled in whole range

(1) Motion register list

· Common to all operating system

Device No.	Application	Signal direction
#0 to	User devices (8000 points)	Cleared by latch clear.
#8000 to	Motion SFC dedicated devices (64 points)	 Cleared at power on or reset only. (Note-1) Cleared by the Motion SFC error history request flag on (keep at power on or reset). (Note-2)
#8064 to #8191	Servo monitor devices (128 points)	Cleared at power on or reset only.

(Note-1) : SW6RN-SV13Q \square /SV22Q \square (Ver. 00M or before) (Note-2) : SW6RN-SV13Q \square /SV22Q \square (Ver. 00N or later)

POINT

The motion registers (#) cannot be set as indirectly specified devices of mechanical system programs.

(a) Motion SFC dedicated devices (#8000 to #8063)

The Motion SFC dedicated devices are shown below. The device's refresh cycle is indicated when the signal direction is "status", or its fetch cycle when the signal direction is "command".

Device No	Signal name		Signal	direction	Refresh	Fetch
Device IVO.	Oignal name		Status	Command	cycle	cycle
#8000 to #8008 to #8016 to #8024 to #8032 to #8040 to	Signal name Seventh error information in past (Oldest error information) Sixth error information in past Fifth error information in past Fourth error information in past Third error information in past Second error information in past	Motion SFC error history (8 errors) (64 points)		1		
#8048 to	First error information in past					
#8056 to #8063	Latest error information					

1) Motion SFC error history devices

The error information which occurred after power-on of the CPU is stored as a history of up to eight past errors. The latest error is stored in #8056 to #8063. All errors, including the Motion SFC control errors and the conventional minor, major, servo, servo program and mode changing errors are stored in this history. At error occurrence, the "Motion SFC error detection flag (M2039)" is also set.

The error information is shown below.

No.	Signal name	Description				
140.	oighai name	Motion SFC control errors	Conventional errors			
+0	Error Motion SFC 0 to 255 : Motion SFC program No. in error program No1 : Independent of Motion SFC program		-1			
+1	Error type	1 :F/FS 2 :G -1 :K or other (not any of F/FS, G and SFC chart) -2 :Motion SFC chart	3: Minor/major error 4: Minor/major error (virtual servomotor shaft) (SV22 only) 5: Minor/major error (synchronous encoder shaft) (SV22 only) 6: Servo error 7: Servo program error 8: Mode change error (SV22 only) 9: Manual pulse generator axis setting error 10: Test mode request error 11: WDT error 12: Personal computer link communication error			
+2	Error program No.	0 to 4095: F/FS, G, K program No. 0 to 255: GSUB program No1: Independent of F/FS, G, K, GSUB	0 to 4095 : Servo program No. when error type is "3", "4" or "7" -1 : Others			
+3	Error block No./ Motion SFC list line No./axis No.	0 to 8191 : F/FS or G program's block No. (line No.) when error type is "1" or "2" 0 to 8188 : Motion SFC list line No. when error type is "-2" -1 : Independent of block when error type is "-1" or error type is "1" or "2"	1 to 32 : Corresponding axis No. when error type is any of "3" to "6" -1 : Others			
+4	Error code	16000 and later (Refer to Chapter "19 ERROR CODE LISTS".)	 Conventional error code (less than 16000) when error type is any of "3" to "6" Error code stored in D9190 when error type is "7" Error code stored in D9193 when error type is "8" -1 when error type is "9" or "10" Error code stored in D9184 when error type is "11" Error code stored in D9196 when error type is "12" 			
+5	Error Month Occur- Day/	The clock data (D9025, D9026, D9027) are set.				
rence hour (BCD code, year in its lower 2 digits) time Minute/ second						

2) Motion SFC error detection flag (M2039)

(Refresh cycle : Scan time)

The Motion SFC error detection flag (M2039) turns on when any of the errors detected by the Motion CPU occurs.

At error occurrence, data are set to the error devices in the following procedure.

- a) Set the error code to each axis or error devices.
- b) Turns on the error detection signal of each axis or error.
- c) Set the error information to the above "Motion SFC error history devices (#8000 to #8063)".
- d) Turns on the Motion SFC error detection flag (M2039) .

In the user program, reset the "Motion SFC error detection flag (M2039)" after reading the error history at the "Motion SFC error detection flag (M2039)".

After that, "Motion SFC error detection flag (M2039)" turns on again at occurrence of a new error.

POINT

- Resetting the "Motion SFC error detection flag (M2039)" will not reset (clear to zero) the "Motion SFC error history devices (#8000 to #8063)".
 After power-on, they always controls the error history continuously.
- (2) Set the clock data and clock data read request (M9028) in the user program.

(b) Servo monitor devices (#8064 to #8191)

Information about "servo amplifier type", "motor current" and "motor speed" for each axis is stored the servo monitor devices.

The details of the storage data are shown below.

Axis No.	Device No.	Signal name						
1	#8064 to #8067							
2	#8068 to #8071		Signal name (Note-1)	Signs	d description	Refresh cycle	Signal direction	
3	#8072 to #8075		Signal name (Note-1) Signal description		Reliesh cycle	Signal direction		
4	#8076 to #8079		Servo amplifier type	1 : MR-H-BN 5 : 2 : MR-J-B 6 :	4 : MR-J2S-B	When the servo amplifier power-on	Monitor device	
5	#8080 to #8083	١.,			5 : MR-J2-M			
6	#8084 to #8087	+0			6 : MR-J2-03B5 65 : FR-V500			
7	#8088 to #8091							
8	#8092 to #8095	+1	Motor current	-5000 to :	5000 (×0.1[%])			
9	#8096 to #8099	+2				3.55ms		
10	#8100 to #8103	+3	Motor speed	-50000 to 50	0000 (×0.1[r/min])			
11	#8104 to #8107		(Note-1) : The value	that the lowest s	ervo monitor device N	o. was added "+0, +1 ···" on e	each axis is shown.	
12	#8108 to #8111		, ,					
13	#8112 to #8115							
14	#8116 to #8119							
15	#8120 to #8123							
16	#8124 to #8127							
17	#8128 to #8131							
18	#8132 to #8135							
19	#8136 to #8139							
20	#8140 to #8143							
21	#8144 to #8147							
22	#8148 to #8151							
23	#8152 to #8155							
24	#8156 to #8159							
25	#8160 to #8163							
26	#8164 to #8167							
27	#8168 to #8171							
28	#8172 to #8175							
29	#8176 to #8179							
30	#8180 to #8183							
31	#8184 to #8187							
32	#8188 to #8191							

REMARK

The servo monitor devices (#8064 to #8191) is effective with SW6RN-SV13Q \square / SV22Q \square (Ver.00D or later).

10.2 Coasting Timer (FT)

Motion device Item		Specification		
	Number of points	1 point (FT)		
	Data size	32-bit/point (-2147483648 to 2147483647)		
	Latch	No latch. Cleared to zero at power-on or reset, a count		
Coasting timer (ET)		rise is continued from now on.		
Coasting timer (FT)	Usable tasks	Normal, event, NMI		
	Access	Read only enabled		
	Timer specifications	888µs timer		
		(Current value (FT) is incremented by 1 per 888µs.)		

11. MOTION SFC PARAMETER

Two different Motion SFC parameters are available: "task parameters" designed to control the tasks (normal task, event task, NMI task) and "program parameters" to be set per Motion SFC program.

Their details are shown below.

11.1 Task Definitions

When to execute the Motion SFC program processing can be set only once in the program parameter per program.

Roughly classified, there are the following three different tasks.

Task type	Contents		
Normal task Executes in motion main cycle (free time).			
	1. Executes in fixed cycle (0.88ms, 1.77ms, 3.55ms, 7.11ms, 14.2ms).		
	2. Executes when the input set to the event task factor among external		
Event task	interrupts (16 points of QI60) turns on.		
	3. Executes by an interrupt from the PLC CPU.		
NIN AL COLL	Executes when the input set to the NMI task factor among external		
NMI task	interrupts (16 points of QI60) turns on.		

11.2 Number of Consecutive Transitions and Task Operation

11.2.1 Number of consecutive transitions

With "execution of active step \rightarrow judgment of next transition condition \rightarrow transition processing performed when condition enables (transition of active step)" defined as a single basic operation of the Motion SFC program execution control in the execution cycle of the corresponding task, this operation is performed for the number of active steps to terminate processing once. And the same operation is processed continuously in the next cycle.

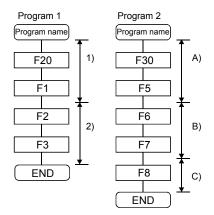
In this case, the transition destination step is executed in the next cycle when the transition condition enables.

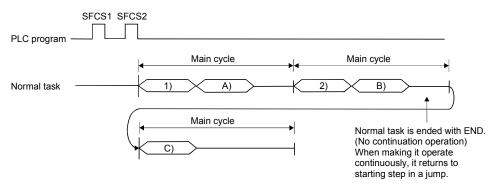
Consecutive transition control indicates that transition destination steps are executed one after another in the same one execution cycle when their transition conditions have enabled (single basic operation is performed consecutively).

In this case, set the number of consecutive transitions.

Control exercised is common to the Motion SFC programs executed by normal tasks.

POINT


Set the number of consecutive transitions to the Motion SFC programs executed by event and NMI tasks for every program.


11.2.2 Task operation

(1) Normal task operation

[Operations]

The Motion SFC program is executed in the main cycle (free time) of the Motion CPU processing.

[Points]

- (a) The Motion SFC program which includes motion control steps should be set to a normal task.
- (b) During execution of an event or NMI task, the execution of the normal task is suspended.

Note that since the normal task allows the event task disable instruction (DI) to be described in an operation control step, the event task can be disabled in the area enclosed by the event task disable instruction (DI) and event task enable instruction (EI).

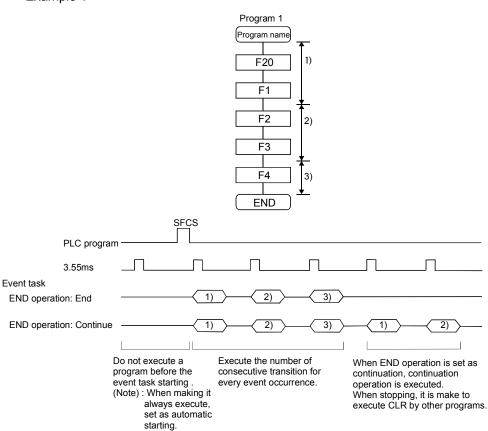
(2) Event task operation

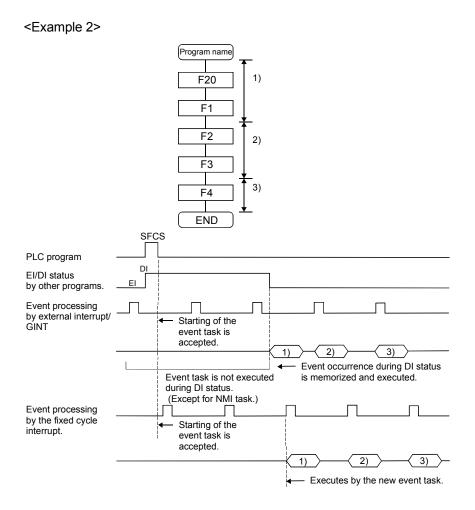
[Operations]

An event task executes the Motion SFC program at occurrence of an event. There are the following events.

(a) Fixed cycle

The Motion SFC program is executed periodically in any of 0.88ms, 1.77ms, 3.55ms, 7.11ms and 14.2ms cycles.


(b) External interrupt (16 points of I0 to I15)


Among 16 points of the QI60 (16-point interrupt module) loaded in the motion slot, the Motion SFC program is run when the input set for an event task turns on.

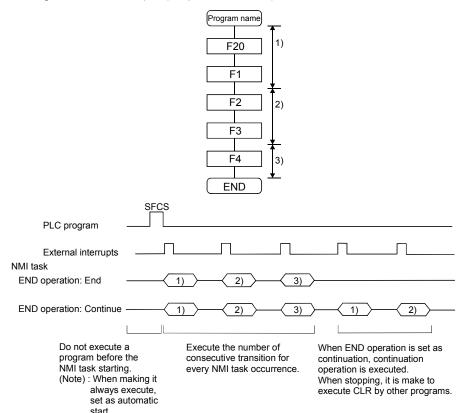
(c) PLC interrupt

The Motion SFC program is executed when the S(P).GINT instruction is executed in the PLC program.

<Example 1>

[Points]

- (a) Multiple events can be set to one Motion SFC program. However, multiple fixed cycles cannot be set.
- (b) Multiple Motion SFC programs can be executed by one event.
- (c) Motion control steps cannot be executed during the event task.
- (d) The event task cannot be executed when it is disabled by the normal task. The event that occurred during event task disable is executed the moment the event task is enabled.


[Errors]

When the motion control step is executed by the Motion SFC program set to the event task, the Motion SFC program error [16113] occurs and stops the Motion SFC program running.

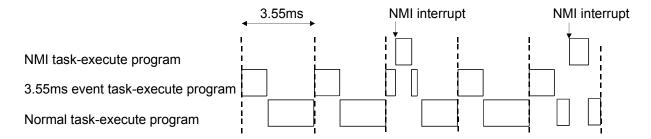
(3) NMI task operation

[Operations]

The Motion SFC program is executed when the input set to the NMI task factor among external interrupts (16 points of QI60) turns on.

[Points]

- (a) NMI task has the highest priority among the normal, event and NMI tasks.
- (b) If the event task is disabled (DI) by the normal task, the interruption of the NMI task is executed, without being masked.


[Errors]

The motion control step is executed during NMI task.

If the motion control step is executed during NMI task, the Motion SFC program error [16113] occurs and stops the Motion SFC program.

11.3 Execution Status of The Multiple Task

Execution status of each Motion SFC program when the Motion SFC program is executed multiple tasks is shown below.

When there are programs which are executed by the NMI task, 3.55ms fixed-cycle even task with a program to run by the NMI task, and the normal task like a chart,

- (1) The 3.55ms fixed-cycle event task is executed at intervals of 3.55ms;
- (2) The NMI task is executed with the highest priority when an NMI interrupt is input; and
- (3) The normal task is executed at free time. as shown above.

[Points]

One Motion SFC program can be executed partially by another task by setting the area to be executed by another task as a subroutine and setting a subroutine running task as another task.

<Example>

No. 0 Main Motion SFC program Normal task

No. 1 Subroutine Event task (3.55ms cycle)

• A normal task may be hardly executed when a NMI task, an event task are executed in many.

11.4 Task Parameters

No.	It	em	Setting item	Initial value	Remark
1	Number of consecutive transitions	Normal task (Normal task common)	1 to 30	3	These parameters are imported when PLC ready flag (M2000)
2	Interrupt setting		Set whether the event task or NMI task is used for external interrupt inputs (I0 to I15).	Event task	turns off to on and used for control thereafter. When setting/changing the values of these parameters, turns the PLC ready flag (M2000) off.

(1) Number of consecutive transitions

[Description]

With "execution of active step \rightarrow judgment of next transition condition \rightarrow transition processing performed when condition enables (transition of active step)" defined as a single basic operation of the Motion SFC program execution control in the execution cycle of the corresponding task, this operation is performed for the number of active steps to terminate processing once. And the same operation is processed continuously in the next cycle.

In this case, the transition destination step is executed in the next cycle when the transition condition enables.

Consecutive transition control indicates that transition destination steps are executed one after another in the same one execution cycle when their transition conditions have enabled (single basic operation is performed consecutively). In this case, the number of consecutive transitions can be set.

Controls in common to the Motion SFC programs executed by normal tasks.

POINT

Set the number of consecutive transitions to the Motion SFC programs executed by event and NMI tasks for every program.

[Errors]

These parameters are imported and checked when the PLC ready flag (M2000) turns off to on.

When the value that was set is outside the setting range, the following Motion SFC error is set and the initial value is used to control.

Error code		Error cause	Error processing	Corrective action
(Note)	Name	Contents	Endi processing	
17000	Normal task consecutive transition count error	The normal task's consecutive transition count of the Motion SFC program executed by the normal task is outside the range 1 to 30.	The initial value of 3 is used for control.	Turn PLC ready flag (M2000) off, make correction to set the value of within the range, and write it to the CPU.

(Note): 0000H (normal)

(2) Interrupt setting

[Description]

Set whether 16 interrupt input points (I0 to I15) of the QI60 interrupt module loaded in the motion slot are used as NMI or event task inputs.

Setting can be made freely per point.

All points default to event tasks.

[Errors]

None.

11.5 Program Parameters

Set the following parameters for every Motion SFC program.

No.	Item	Setting range	Initial value	Remark
1	Start setting	Automatically started or not	Not setting	
		It is only one of normal, event and NMI tasks	Normal task	
2	Execute task	When you have set the event task, further set the event which will be enabled. Always set any one of the following 1 to 3. 1. Fixed cycle It is one of 0.88ms, 1.77ms, 3.55ms, 7.11ms and 14.2ms or none. 2. External interrupt (make selection from those set to event task) Multiple interrupt can be set from among I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14 and I15. 3. PLC interrupt Multiple interrupt can be set from among I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14 and I15. 1 to 3 can be set also by OR. (A duplication setting is possible.) The same event can be shared among multiple Motion SFC programs. When you have set the NMI task, further set the interrupt input which will be enabled. 1. External interrupt (make selection from those set to NMI task) Multiple interrupt can be set from among I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14 and I15.	None	These parameters are imported at starting of the PLC ready flag (M2000) and used for control there after. When setting/changing the values of these parameters, turn PLC ready flag (M2000) off.
3	Number of consecutive	1 to 10 Set the number of consecutive transitions toward the	1	
	transitions	program set to the event or NMI task.		
4	END operation	End/continue Set the operation mode of the END step toward the program set to the event or NMI task.	End	

POINT

The settings of "END operation" are invalid for the subroutine called program. "END operation" is controlled as "end".

(1) Start setting

[Description]

The following control is changed by "automatically started or not" setting.

• Program run by normal task

Г	l			
No.	Item	When "automatically started"	When "not automatically started"	
1	Start control	In the main cycle after the PLC ready flag (M2000) turns off to on, the program is executed from the initial (first) step in accordance with the number of consecutive transitions of the normal task. After that, the program is executed continuously by to motion main cycle. (The settings of "executed task" a	The program is started by the Motion SFC start instruction (S(P).SFCS) from the PLC or by a subroutine call/start (GSUB) made from the Motion SFC program. • When started by the S(P).SFCS instruction In the main cycle after execution of the S(P).SFCS instruction, the program is executed from the initial (first) step in accordance with the number of consecutive transitions of the normal task. • When subroutine started In the (next) main cycle after execution of GSUB, the program is executed from the first step in accordance with the number of consecutive transitions of the normal task. • When subroutine called The program is executed in the same cycle from the first step. the number of consecutive transitions of the normal task in the and "number of consecutive transitions" of the subroutine called	
2	END control	program are invalid. It is controlled as the normal task.) Ends the self program. Again, the program is started by the Motion SFC start instruction (S(P).SFCS) from the PLC or by a subroutine call/start (GSUB) made from the Motion SFC program.		

• Program run by event task

No.	Item	When "automatically started"	When "not automatically started"		
NO.	item	·	When "not automatically started"		
		At occurrence of a valid event after starting of the PLC ready flag (M2000), the program is executed	The program is started by the Motion SFC start instruction (S(P).SFCS) from the PLC or by a subroutine call/start		
1	Start control	from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program.	(GSUB) made from within the Motion SFC program. • When started by the S(P).SFCS instruction At occurrence of a valid event after execution of the S(P).SFCS instruction, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. • When subroutine started At occurrence of a valid event after execution of GSUB, the program is executed from the first step in accordance with the number of consecutive transitions of the corresponding program. • When subroutine called The program is executed immediately from the first step. the number of consecutive transitions of the corresponding		
		program at occurrence of a valid event. (The subroutine called program is controlled in accordance with the			
-		"executed task" and "number of consecutive transitio	ns" of the call source program.)		
2	END control	As specified for END operation.			

• Program run by NMI task

No.	Item	When "automatically started"	When "not automatically started"	
1	Start control	At occurrence of a valid event after starting of the PLC ready flag (M2000), the program is executed from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. After that, the program is executed continuously by the program at occurrence of a valid event.	The program is started by the Motion SFC start instruction (S(P).SFCS) from the PLC or by a subroutine call/start (GSUB) made from within the Motion SFC program. • When started by the S(P).SFCS instruction At occurrence of a valid event after execution of the S(P).SFCS instruction, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. • When subroutine started At occurrence of a valid event after execution of GSUB, the program is executed from the first step in accordance with the number of consecutive transitions of the corresponding program. • When subroutine called The program is executed immediately from the first step. The number of consecutive transitions of the corresponding of the	
2	END control	As specified for END operation.		

[Errors] None.

POINT

In the case of the program which is executed by the normal task, write the program so that it is not ended by <code>END</code> but it returns to the starting step by a jump when starting of the automatically from an initial again.

(2) Execute task

[Description]

Set the timing (task) to execute a program.

Specify whether the program will be run by only one of the "normal task (main cycle), event task (fixed cycle, external interrupt, PLC interrupt) and NMI task (external interrupt)".

When the event task is set, multiple events among the "fixed cycle, external interrupt (for event task) and PLC interrupt".

However, multiple fixed cycles cannot be set toward one Motion SFC program. Example) Interrupt setting: Inputs for event task I6, I7, I8, I9, I10, I11, I12, I13,

I14 and I15

Motion SFC program No. 10 – event : Fixed cycle (3.55ms)

Motion SFC program No. 20 - event :

Fixed cycle (1.77ms) + external interrupt (I6)

Motion SFC program No. 30 - event :

External interrupts (I7, I15) + PLC CPU

interrupt

When the NMI task is set, multiple interrupt inputs among the external interrupts (for NMI task) can be set.

Example) Interrupt setting: Inputs for NMI task I0, I1, I2, I3, I4, I5

Motion SFC program No. 10 – NMI : I0 Motion SFC program No. 20 – NMI : I1 + I2 Motion SFC program No. 30 – NMI : I5

[Errors]

This program parameter is imported when the PLC ready flag (M2000) turns off to on, and is checked at starting of the Motion SFC program (automatic start, start from PLC or subroutine start).

When the value is illegal, either of the following Motion SFC errors is set and the initial value is controlled.

Error code	Error cause		Error processing	Corrective action
(Note)	Name	Contents	Error processing	Corrective action
17010	Execute task setting is illegal	Multiple events among the normal, event and NMI tasks are set, or one is not set.	The initial value (normal task) is	Turn PLC ready flag (M2000) off, make correction to set the value
17011	Executed task setting is illegal (event)	Two or more fixed cycles of the event task have been set.	controlled.	of within the range, and write it to the CPU.

(Note): 0000H (normal)

POINT

Since the execute task can be set for every Motion SFC program No., multiple programs need not be written for single control (machine operation) to divide execution timing-based processing's.

For example, it can be achieved easily by subroutine starting the areas to be run in fixed cycle and to be run by external interrupt partially in the Motion SFC program run by the normal task.

(3) Number of consecutive transitions

[Description]

Set the number of consecutive transitions to program executed by the event or NMI task for every program.

Refer to Section "11.4 Task Parameters" for number of consecutive transitions.

[Errors]

This program parameter is imported when the PLC ready flag (M2000) turns off to on, and is checked at starting of the Motion SFC program (automatic start, start from PLC or subroutine start).

When the value is illegal, either of the following Motion SFC errors is set and the initial value is controlled.

Error code	Error cause		Francisco de la constanta	Corrective action	
(Note)	Name	Contents	Error processing	Corrective action	
17001	Event task consecutive transition count error	The number of consecutive transitions of the Motion SFC program started by the event task is outside the range 1 to 10.	The initial value	Turn PLC ready flag (M2000) off, make correction to set the value	
17002	NMI task consecutive transition count error	The number of consecutive transitions of the Motion SFC program started by the NMI task is outside the range 1 to 10.	of 1 is controlled.	of within the range, and write it to the CPU.	

(Note): 0000H (normal)

(4) END operation

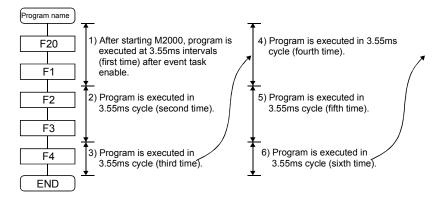
[Description]

Set the operation at execution of the END step toward the program executed by the event or NMI task.

This varies the specifications for the following items.

Program run by NMI task

No.	Item	When "ended"	When "continued"	
1	Control at END execution	Ends the self program.	Ends to execute the self program with this event/interrupt.	
2	Restart after END execution	Again, the program is started by the Motion SFC start instruction (S(P).SFCS) from the PLC or by a subroutine call/start (GSUB) made from the Motion SFC program.	Restarted at occurrence of the next event/interrupt, and run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. After that, at occurrence of an event/interrupt, the program is executed in accordance with the number of consecutive transitions of the corresponding program.	
3	Restart after end by clear step CLR	Again, the program is started by the Motion SFC call/start (GSUB) made from the Motion SFC program is started by the Motio	C start instruction (S(P).SFCS) from the PLC or by a subroutine rogram.	


POINT

The END operation of subroutine called program is controlled as an "end".

• The following operation example assumes that the END operation is "continued."

Program parameters

- Automatically started
- Execute task = event 3.55ms
- Number of consecutive transitions = 2
- End operation "continued"

11.6 How to Start The Motion SFC Program

The Motion SFC program is executed during PLC ready flag (M2000) is on. The Motion SFC program may be started by any of the following three methods.

- (1) Automatic start
- (2) Start from the Motion SFC program
- (3) Start from the PLC

Set the starting method in the program parameter for every Motion SFC program. Refer to Section "11.5 Program Parameters" for parameter setting.

11.6.1 Automatic start

[Operations]

An automatic start is made by turning PLC ready flag (M2000) on.

11.6.2 Start from the Motion SFC program

[Operations]

A start is made by executing a subroutine call/start step in the SFC program. Refer to Chapter "6 MOTION SFC PROGRAMS" for details of the subroutine call/start step.

11.6.3 Start from PLC (PLC instruction S(P).SFCS)

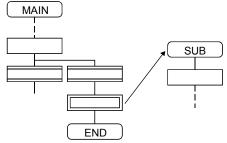
The SFC program can started by executing the S(P).SFCS in the PLC program. Refer to Chapter "5 MOTION DEDICATED PLC INSTRUCTION" for details.

11.7 How to End The Motion SFC Program

[Operations]

- (1) The Motion SFC program is ended by executing END set in itself.
- (2) The Motion SFC program is stopped by turning off the PLC ready flag (M2000).
- (3) The program can be ended by the clear step.

 Refer to Section "6.5.4 Clear step" for details of the clear step.


[Point]

(1) Multiple ENDs can be set in one Motion SFC program.

11.8 How to Change from One Motion SFC Program to Another

Use a subroutine start to stop the Motion SFC program running and switch it to another Motion SFC program.

Motion SFC program changing example using subroutine start

11.9 How to Manage The Executing Program

There are no specific information that indicates which the Motion SFC program is executing. Use a user program (Motion SFC program/PLC program) to control the executing program.

11.10 Operation Performed at CPU Power-Off or Reset

When the CPU is powered off or reset operation is performed, Motion SFC programs run are shown below.

- (1) When the CPU is powered off or reset operation is performed, Motion SFC programs stop to execute.
- (2) At CPU power-off or key-reset, the contents of the motion registers #0 to #7999 are held. Initialize them in the Motion SFC programs as required.
- (3) After CPU power-on or reset processing, Motion SFC programs run is shown below.
 - The SFC programs set to start automatically are run from the beginning by turning PLC ready flag (M2000) on in the PLC program.
 - The other Motion SFC programs are also executed from the first at starting.

11.11 Operation Performed when CPU is Switched from RUN/STOP

When a RUN/STOP switch is operated, PLC ready flag (M2000) turns on/off in accordance with "Operation at STOP to RUN" of a setting of a basic systems. Refer to Section "1.5.3 Individual parameters" for the details of "Operation at STOP to RUN".

And, refer to the next section for PLC ready flag (M2000) off/on.

11.12 Operation Performed when PLC Ready flag (M2000) Turns OFF/ON

This section explains about the turns off/on of PLC ready flag (M2000).

The on/off condition of PLC ready flag (M2000) differences in "Operation at STOP to RUN" of a setting of a basic systems.

Refer to Section "1.5.3 Individual parameters" for details.

[M2000 OFF \rightarrow ON]

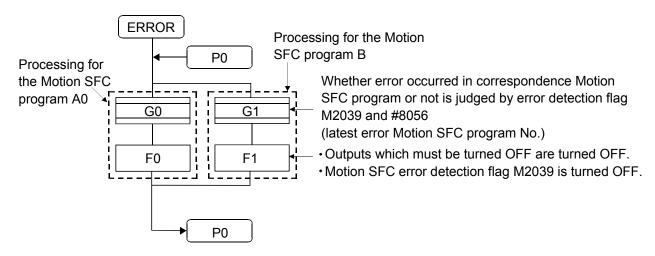
If there is no fault when PLC ready flag (M2000) turns off to on, the PCPU ready flag (M9074) turns on.

When this PCPU ready flag (M9074) turns on, Motion SFC programs can be executed. An automatic start Motion SFC program starts execution from the first.

[M2000 ON \rightarrow OFF]

When PLC ready flag (M2000) turns off, Motion SFC programs stops to execute and the PCPU ready flag (M9074) turns off.

Since actual outputs PY has whole point turn off.


POINT

When the PLC ready flag (M2000) turns off, Motion SFC programs stop but actual outputs PY in the Motion SFC programs do not turn off.

11.13 Operation at The Error Occurrence

Outputs are held if Motion SFC programs stop due to error occurrence.

To turn off outputs at error occurrence, executes the following Motion SFC program.

12. USER FILES

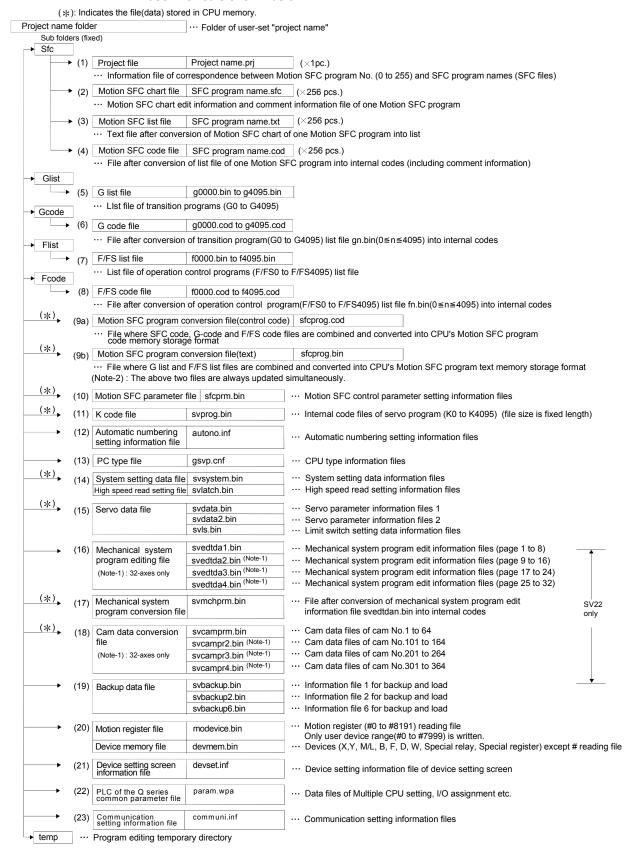
A user file list and directory structure are shown below

12.1 Projects

User files are managed on a "project" basis.

When you set a "project name", a "project name" folder is created as indicated on the next page, and under that, sub folders (Sfc, Glist, Gcode, Flist, Fcode) classified by file types are created.

Also, under the Sfc sub folders, initial files of the "project file (project name.prj)" and an editing folder (temp) are created.


POINT

- Set the "project name" on the project management screen.
- The "project name" is restricted to 230 characters in length.
- The "project path name" + "project name" are restricted to 230 characters in length.

((Example) "C:\Usr\.....\project name\")

12.2 User File List

A user file list is shown below.

12.3 Online Change in The Motion SFC Program

The online change is used to write to the Motion SFC program to the internal SRAM during the positioning control (M.RUN LED: ON).

Program correction and a check of operation can be executed repeatedly at the Multiple CPU system start.

Data in which online change is possible are shown below.

Applicable data		Online change	Remarks
System setting data	System setting	×	
	Servo setting data	×	
Motion SFC program	Motion SFC parameter	×	
	Motion SFC chart	0	Online change is possible for the only program during stop.
	Operation control step (F/FS)	0	
	Transition (G)	0	
	Servo program (K)	0	Online change of mode assignment setting is not possible.
Mechanical system program (SV22 only)		×	
Cam data (SV22 only))	×	

)	٠	Possible	\times	· N	οt	possible
_		i USSIDIC	/\	. ! \	Uι	possible

POINT

- (1) Program writing is executed during the positioning control in the online change. Be safely careful enough for work.
- (2) Programs writing to the internal SRAM of Motion CPU at the mode operated by ROM in the online change. If the online change is executed at the mode operated by ROM, it returns to the contents of program written in the internal FLASH ROM by the next power ON or resetting.
- (3) If the online change is executed simultaneously to one Motion CPU from the multiple personal computers, a program writing may not be executed. Please do not perform.
- (4) If the online changes are executed by other personal computer during the following operation by SW6RN-GSV□P, injustice of a monitor value and operation failure may occur. Please do not perform.
 - Monitor mode of the Motion SFC program Test mode
 - Debug mode of the Motion SFC program
- (5) If the online change of Motion SFC chart added newly is executed, since the online change of Motion SFC parameter cannot be executed, it operates as the normal task (default value).
- (6) When using the SV22, if the online change is executed by changing the "program/servo program editor screen [Mode assignment setting]", the contents of change are not reflected.
- (7) If the cables between the peripheral devices and Motion CPU fall out, or the power supply of the Motion CPU turns OFF or resets, the program is corrupted. Write the program again with the communication screen of SW6RN-GSV□P.

12.3.1 Operating method for The Online Change

Select the "Online change OFF/ON" of Motion SFC program with the "program editor screen [Convert] menu – [Online change setting]" of SW6RN-GSV□P.

There are following three methods for the online change of Motion SFC program.

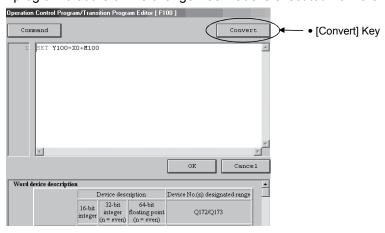
- When the program editor screen [SFC diagram write] is used ---- Online change of the Motion SFC program
- When the operation control/transition program editor screen [Convert] is used ---Online change of the operation control/transition program editor screen
- When the servo program editor screen [Store] is used ---- Online change of the servo program
- (1) When the program editor screen [SFC diagram write] is used.

Online change of the Motion SFC program during edit is executed by selecting the [SFC diagram write] key.

Online change is possible to the Motion SFC program during stop.

If the online change is made to the program during execution, an alarm message indicates. (Execution/stop state of the Motion SFC program can be checked with the program batch monitor.)

If the start request is made to the program during online change, the Motion SFC start error (error code16007: online change) will occur and the program does not start.

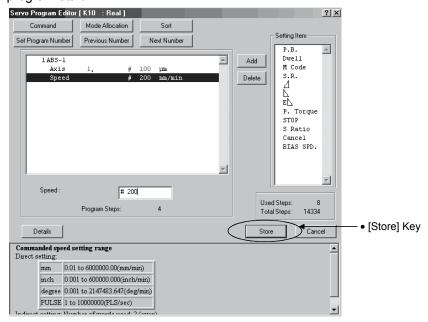


(2) When the operation control/transition program editor screen [Convert] is used.

Online change of the operation control/transition program during edit is executed by selecting the [Convert] key.

Online change is possible to the operation control/transition program during execution.

A program that the online change was made is executed from the next scan.

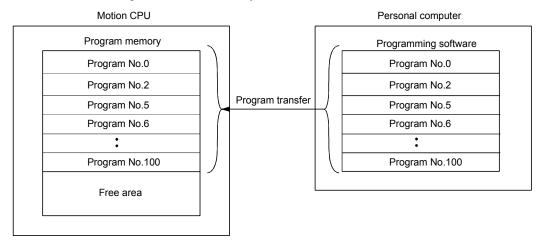


Operations for which made the online change to the operation control/transition program during execution in the following conditions are shown below. Be careful to execute the online change in the following conditions.

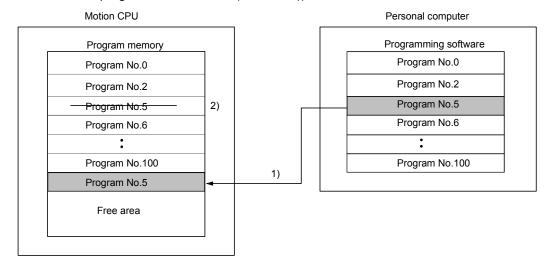
Program	Condition	Operation
FSn Gn or FSn Gn	Online change of the FSn operation control program is executed during FSn execution in the state of waiting for the completion of condition for Gn.	After completion of online change, the FSn repeats the operation control program that the online change was made until the completion of condition for Gn.
Gn or Gn	Online change of the Gn program is executed in the state of waiting for the completion of condition for Gn. (The conditional sentences of program to write are except the TIME instruction.)	After completion of online change, the Gn does not transit to the next step until the completion of condition for program that the online change was made.
Gn or Gn	Online change of the Gn program including the TIME instruction is executed in the state of waiting for the completion of condition for Gn.	After completion of online change, Gn is ended regardless of the waiting time of TIME instruction and the next step is executed.
Kn or Gn	Online change of the Gn program during the servo program execution for Kn.	After execution of servo program, the program of changed Gn is executed.

(3) When the servo program editor screen [Store] is used.
Online change of the servo program during edit is executed by selecting the [Store] key.

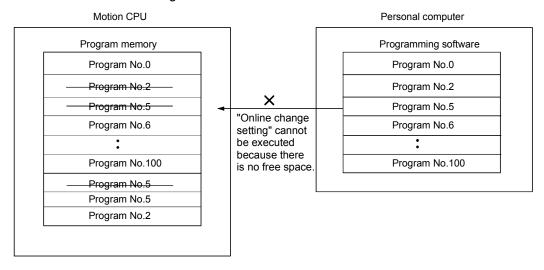
Online change is possible to the servo program during execution. A program that the online change was made is executed at the next servo program start.

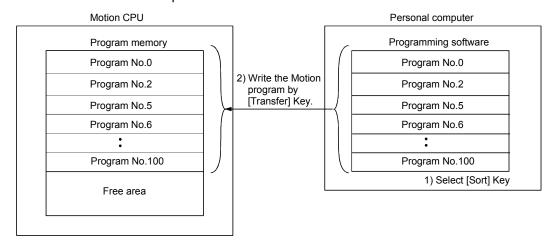

Operations for which made the online change to the servo program in the following conditions during execution are shown below. Be careful to execute the online change in the following conditions.

Program	Condition	Operation
ON bit device Kn or OFF bit device Kn	 Online change of the servo program Kn at the WAITON or after WAITOFF is executed in the state of waiting for the completion of condition for WAITON/WAITOFF. 	 After completion of condition for WAITON/WAITOFF, the servo program before the online change is started. The servo program that the online change was made is executed at the next servo program start.
Gn Kn or Gn Kn	Online change of the servo program Kn after Gn is executed in the state of waiting for the completion of condition for Gn.	After completion of condition for Gn, the servo program that online change was made is executed.


12.3.2 Transfer of program

The outline operations to transfer the program from SW6RN-GSV□P to the program memory of Motion CPU are described.


- (1) Program writing by the [Communication] menu [Transfer]
 - (a) After transfer, programs are stored in the program memory of Motion CPU stuffing to the front for every kind.

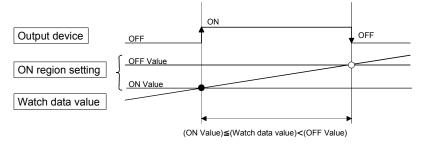

- (2) Program writing by the [Online change]
 - (a) After online change, a program to execute the online change is stored in the free area after the program stored previously. (Refer to 1)) After that, the program written in previously is made invalid and the new program is made valid. (Refer to 2))

(b) If the online change is executed repeatedly, the free space in program memory is lost and the online change may not be executed. In this case, an error message is displayed by SW6RN-GSV□P at the online change, and "Online change OFF" is set.

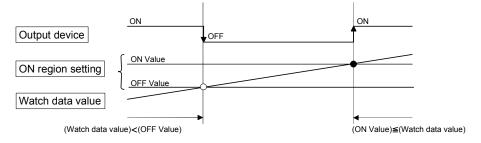
- (c) In the case of b), arrange to stuff to the front the invalid programs. Operation procedures to stuff to the front are shown below.
 - Select the "program editor screen [Option] menu [Sort]" of SW6RN-GSV□P. In this case, the invalid programs in the personal computer arranges by SW6RN-GSV□P.
 - 2) Execute the program writing with the [Communication] menu [Transfer] in the stop state of Motion CPU.

13. LIMIT SWITCH OUTPUT FUNCTION

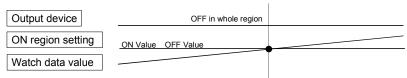
This function is used to output the ON/OFF signal corresponding to the data range of the watch data set per output device.


Motion control data or optional word data can be used as watch data. (Refer to Section "13.2 Limit Output Setting Data" for details.) A maximum output device for 32 points can be set regardless of the number of axes.

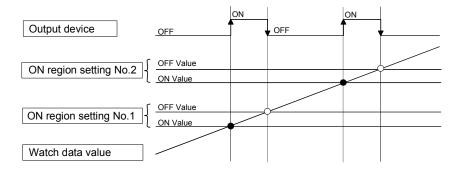
13.1 Operations


- (1) ON output to an output device is made while the watch data value is in the ON output region set with (ON Value) and (OFF Value) in this function.
 - (a) (ON Value), (OFF Value) and watch data value are handled as signed data. ON output region where an ON output is made to the output device is governed by the magnitude relationship between (ON Value) and (OFF Value) as indicated below.

Relationship between (ON Value) and (OFF Value)	ON output region
(ON Value) < (OFF Value)	(ON Value) <= (watch data value) < (OFF Value)
(ON Value) > (OFF Value)	(ON Value) <= (watch data value) (Watch data value) < (OFF Value)
(ON Value) = (OFF Value)	Output OFF in whole region


1) (ON Value) < (OFF Value)

2) (ON Value) > (OFF Value)


3) (ON Value) = (OFF Value)

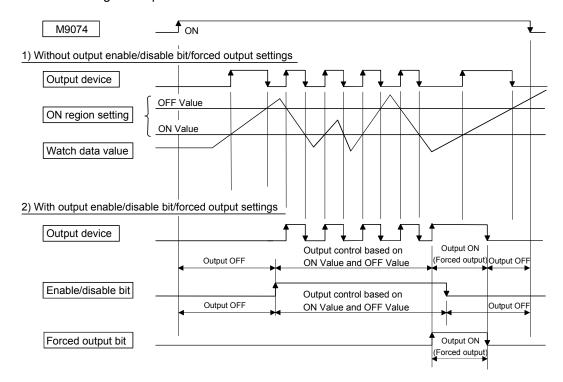
(b) The limit switch outputs are controlled based on the each watch data during the PCPU ready status (M9074: ON) by the PLC ready flag (M2000) from OFF to ON.

When the PCPU ready flag (M9074) turns OFF by turning the PLC ready flag (M2000) from ON to OFF, all points turn OFF. When (ON Value) and (OFF Value) are specified with word devices, the word device contents are input to the internal area when the PLC ready flag (M2000) turns from OFF to ON. After that, the word device contents are input per motion operation cycle, and limit switch outputs are controlled.

(c) Multiple outputs (Up to 32 points) can be also set to one watch data. In each setting, the output device may be the same.If multiple ON region settings have been made to the same output device, the logical add of the output results in the regions is output.

(2) Output enable/disable bit can be set and executed enable/disable of the limit switch outputs point-by-point.

Limit switch output control is executed when the output enable/disable bit is ON, and the output is OFF when it is OFF.


If there is no setting, the outputs are always enabled.

(3) Forced output bit can be set and turned the forcibly output of the limit switch outputs point-by-point ON.

The output is ON when the forced output bit is ON. Priority is given to control of this setting over off (disable) of the "output enable/disable bit".

If there is no setting, no forced outputs are not always made.

(4) When the multiple watch data, ON region, output enable/disable bit and forced output bit are set to the same output device, the logical add of output results of the settings is output.

13.2 Limit Output Setting Data

Limit output data list are shown below.

Up to 32 points of output devices can be set.

(The following items of No.1 to No.5 are set together as one point.)

No.	. Item		Setting range	Fetch cycle	Refresh cycle	Remarks
1	Output device		Bit device (X, Y, M, L, B)	_	Operation cycle	
2	2 Watch data		Motion control data/ word device (D, W, #, absolute address) (16-bit integer type/32-bit integer type/ 64-bit floating-point type)			
3	ON region ON Value OFF Value Output enable/disable		Word device (D, W, #)/constant (K, H) Word device (D, W, #)/constant (K, H) Bit device (X, Y, M, L, B, F, special relay)/ none (default)	Operation cycle	-	ON : Enable OFF : Disable None : Always enable
5	5 Forced output bit		Bit device (X, Y, M, L, B, F, special relay)/ none (default)			None : No forced outputs are always made (OFF status)

(1) Output device

- (a) Set the bit device which outputs the ON/OFF signal toward the preset watch data
- (b) As the output device, the following devices can be used.

Item	Device No. setting range		
Input relay (Note-1)	X0 to X1FFF		
Output relay (Note-2)	Y0 to Y1FFF		
Internal relay (Note-3)	M0 to M8191		
Latch relay	L0 to L8191		
Link relay	B0 to B1FFF		

(Note-1): PX is write-disabled and it cannot be used as the output device. For X, only the free No. of the input card non-loading can be used.

(Note-2): The real output device range (PY) is also included.

(Note-3): M2001 to M2032 cannot be used to the output device.

Be careful because it affect a positioning operation, when the positioning dedicated devices are set.

(2) Watch data

- (a) This data is used to perform the limit switch output function. This data is comparison data to output the ON/OFF signal. The output device is ON/OFF-controlled according to the ON region setting.
- (b) As the watch data, motion control data or optional word device data can be used.
 - 1) Motion control data

litere	l lmi4	Data tura	Axis No. setting range		
Item	Unit	Data type	Q173CPU(N)	Q172CPU(N)	
Feed current value	Position command	20 hit			
Real current value	Position command	32-bit			
Deviation counter value	PLS	integer type			
Motor current (Command output voltage : ACE)	0.1% (0.01V)	16-bit	1 to 32	1 to 8	
Motor current (Command output voltage : ACF)		integer type			
Motor speed	0.1r/min				
Cam shaft within-one-revolution current value					
Feed current value (Virtual)		32-bit			
After-differential current value (Virtual)	PLS	integer type			
After-differential encoder current value			1 to 10	1 to 8	
Encoder current value			1 to 12	1 10 0	

2) Word device data

Item	Device No. setting range
Data register	D0 to D8191
Link register	W0 to W1FFF
Motion register	#0 to #8191

3) When the optional device data is set, the following data type is set as the data type to be compared.

Data type	Device No. setting range	
16-bit integer type		
32-bit integer type	Set the device No. as an even No	
64-bit floating-point type		

(3) ON region setting

- (a) The data range which makes the output device turn ON/OFF toward the watch data.
- (b) The following devices can be used as the ON Value and OFF Value of the data range.

The data type of device/constant to be set is the same as the type of watch data.

Item	Device No. setting range
Data register	D0 to D8191
Link register	W0 to W1FFF
Motion register	#0 to #8191
Constant	Hn/Kn

(4) Output enable/disable bit

- (a) Set the status of output enable/disable bit when the limit switch output is forbidden during operation.
 - 1) The following control is exercised.

Output enab	le/disable bit	Control description
Without setting (alw	ays enable)	Limit switch output is turned ON/OFF
	ON (anabla)	based on the ON region setting (ON
With setting	ON (enable)	Value, OFF Value).
	OFF (disable)	Limit switch output is turned OFF.

(b) Usable devices

E	
Item	Device No. setting range
Input relay (Note-1)	X0 to X1FFF
Output relay ^(Note-2)	Y0 to Y1FFF
Internal relay	M0 to M8191
Latch relay	L0 to L8191
Link relay	B0 to B1FFF
Annunciator	F0 to F2047
Special relay	M9000 to M9255

(Note-1): The real input range(PX) is included.

(Note-2): The real input range(PY) is included.

(5) Forced output bit

- (a) Set the "forced output bit" when you want to forcibly provide the limit switch outputs during operation.
 - 1) The following control is exercised.

Forced of	output bit	Control description
Without setting		Limit switch outputs are turned
	OFF	ON/OFF on the basis of the "output
\A/ith a attion		enable/disable bit" and ON region
With setting		setting (ON Value, OFF Value).
	ON	Limit switch outputs are turned ON.

(b) Usable devices

Item	Device No. setting range		
Input relay	X0 to X1FFF		
Output relay	Y0 to Y1FFF		
Internal relay	M0 to M8191		
Latch relay	L0 to L8191		
Link relay	B0 to B1FFF		
Annunciator	F0 to F2047		
Special relay	M9000 to M9255		

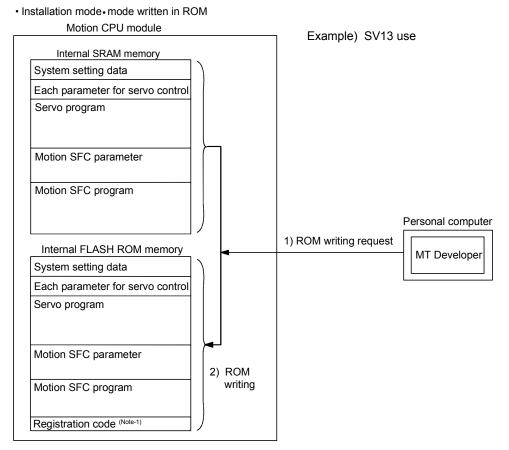
MEMO			

14. ROM OPERATION FUNCTION

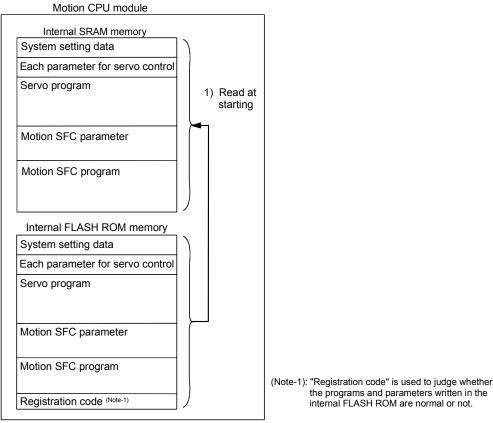
Refer to Section 1.3.4 for the correspondence version of the Motion CPU and the software.

This function is used to store beforehand the user programs and parameters in the internal FLASH ROM memory built-in the Motion CPU module, and operate it based on the data of internal FLASH ROM memory.

14.1 About the ROM Operation Function

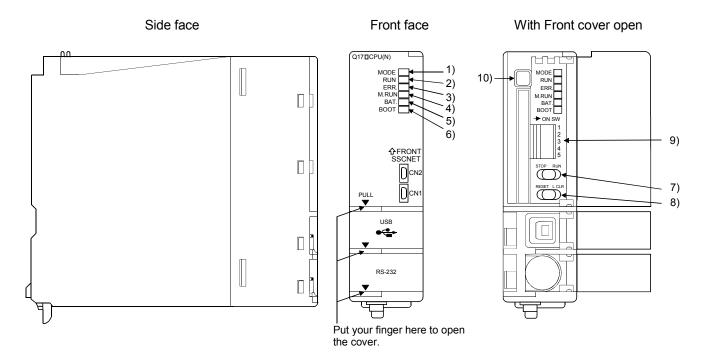

The outline procedure of ROM operation function is shown below.

- (1) Turn on or reset the power supply of Multiple CPU system in the "Mode operated by RAM".
- (2) Execute a trial run and adjustment by creating the system setting, programs and parameters using SW6RN-GSV□P.
- (3) Turn on or reset the power supply of Multiple CPU system in the "Installation mode mode written in ROM".
- (4) Write the system setting, programs and parameters of SRAM built-in the Motion CPU module to the internal FLASH ROM by performing the ROM writing request using SW6RN-GSV□P.
- (5) Start a normal operation by starting the Motion CPU in the "Mode operated by ROM" after reading the system setting, programs and parameters written in the internal FLASH ROM to the internal SRAM.


POINT

- (1) Switch the operation mode using a DIP switches of Motion CPU module.
- (2) Confirm the operation mode with "Mode LED" and "BOOT LED" of Motion CPU module.

Outline of processing is shown next page.



Mode operated by ROM Motion CRIL modu

14.2 Specifications of LED • Switch

(1) Name of parts

No.	Name		Application
1)	MODE LED(Mode judging)	Lit(green): Normal mode Lit(orange): Installation mode • mode written in ROM	
2)	RUN LED	• Lit • Not lit	: Motion CPU normal start : Motion CPU fault LED turns off when the trouble occurred at Motion CPU start or WDT error
3)	ERR. LED	Lit Flickers Not lit	occurred. : LED turns on at following errors occurrence. 1) WDT error 2) System setting error 3) Servo error 4) Self diagnostic error which will not stop the operation (except battery error). 5) Operating system software is not installed. : Detection of self diagnostic error which will stop the operation. : Normal
4)	M.RUN LED	Lit Flickers Not lit	During motion control Latch clear start Not during motion control or detection of self diagnostic error which will stop the operation.
5)	5) BAT. LED • Lit : Battery error occurrence (External battery use)		: Battery error occurrence (External battery use)
6)	BOOT LED	• Lit • Not lit	: Mode operated by ROM : Mode operated by RAM/Installation mode • mode written in ROM

(2) Applications of switches

Name	Application			
RUN/STOP switch	Move to RUN/STOP. RUN : Motion SFC program is started. STOP: Motion SFC program is stopped.			
RESET/L.CLR switch (Note-1) (Momentary switch)	RESET: Set the switch to the "RESET" position once to reset the hardware. Applies a reset after an operation error and initialized the operation. L.CLR: Clear the latch area all data which set with the parameters. (LATCH CLEAR also clears data outside the latch area at this time.) Latch clear operating method 1) Set the "RUN/STOP" switch to "STOP". 2) Move the "RESET/L.CLR" switch to "L.CLR" several times until the "M.RUN LED" flickers. ("M.RUN LED" flickers: Latch clear completed.) 3) Move the "RESET/L.CLR" switch to "L.CLR" once more. ("M.RUN LED" turn off.)			
Dip switches ON SW 1 2 3 4 5	tch 1			
Memory card EJECT button	Used to eject the memory card from the Motion CPU.			
	RUN/STOP switch RESET/L.CLR switch (Note-1) (Momentary switch) Dip switches ON SW 1 2 3 4 5			

(Note-1): It is not possible to reset the Multiple CPU system by each of the PLC CPU/Motion CPU No.2 to 4.

If it is reset, other CPU occurred to stop of the overall Multiple CPU system where "MULTI CPU DOWN" (Error code: 7000).

The overall Multiple CPU system reset is resetting the CPU No.1 of PLC CPU.

14.3 ROM Operation Function Details

(1) Operation mode

"Operation mode" of CPU is set by the state of DIP switch 2, 3, 5 of Motion CPU module at the power supply on or reset of Multiple CPU system.

DIP switch setting, operation mode and operation mode overview are shown below.

(a) DIP switch setting and operation mode

Dip switch setting			On a water made
SW2	SW3	SW5	Operation mode
OFF	OFF	ON	Installation mode • mode written in ROM
OFF	ON	ON	Must not be set (Note-1)
ON	OFF	ON	Must not be set (Note-1)
ON	ON	ON	Installation mode • mode written in ROM
OFF	OFF	OFF	Mode operated by RAM
OFF	ON	OFF	Must not be set (Note-2)
ON	OFF	OFF	Must not be set (Note-2)
ON	ON	OFF	Mode operated by ROM

(Note-1): It operates in the "Installation mode • mode written in ROM" for wrong setting. (Note-2): It operates in the "Mode operated by RAM" for wrong setting.

(b) Operation mode overview

Operation mode	Operation overview		
	MODE LED turns on in orange.		
	• BOOT LED turns off.		
	The operating system software can be installed.		
	• The user programs and parameters for ROM operation can be written to the FLASH ROM built-		
Installation mode •	in Motion CPU module.		
mode written in ROM	• ROM writing is executed at ROM operating after operation check in the RAM operating mode.		
	The user programs and parameters stored in the SRAM built-in Motion CPU module are batch		
	written to the FLASH ROM built-in Motion CPU module.		
	• It becomes STOP state regardless of the RUN/STOP switch in front of Motion CPU module.		
	The digital oscilloscope function cannot be used.		
	MODE LED turns on in green.		
Mode operated by RAM	BOOT LED turns off.		
	Operation is executed based on the user programs and parameters stored in the SRAM built-in		
	Motion CPU module.		
	MODE LED turns on in green.		
	BOOT LED turns on.		
	Operation starts after reading the user programs and parameters stored in the internal FLASH		
	ROM to the internal SRAM at power supply on or reset of Multiple CPU system.		
Made approached by POM	Even if the user programs and parameters are changed by SW6RN-GSV□P during ROM		
Mode operated by ROM	operating mode, it returns to the contents of internal FLASH ROM at next power supply on or		
	system reset.		
	Also, even if the auto tuning data are reflected on the servo parameter of Motion CPU by		
	operating the servo amplifier with auto-tuning setting, it returns to the contents of internal		
	FLASH ROM at next power supply on or reset release.		

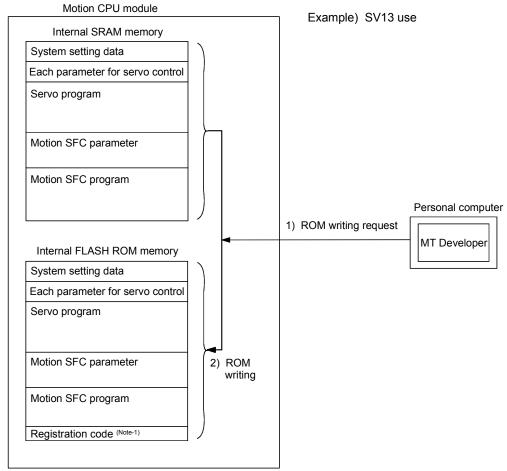
POINT

Even if a DIP switch setting is changed on the way after the power supply on, "Operation mode" is not changed. Be sure to turn on or reset the power supply of Multiple CPU system to change a DIP switch setting.

(2) Applicable data into ROM

The data contents batch written to the internal FLASH ROM by ROM writing are shown below. Backup data except the followings (current position of servomotor in absolute position system, home position and latch device, etc.) cannot be written to the internal FLASH ROM.

(a) Content of applicable data into ROM

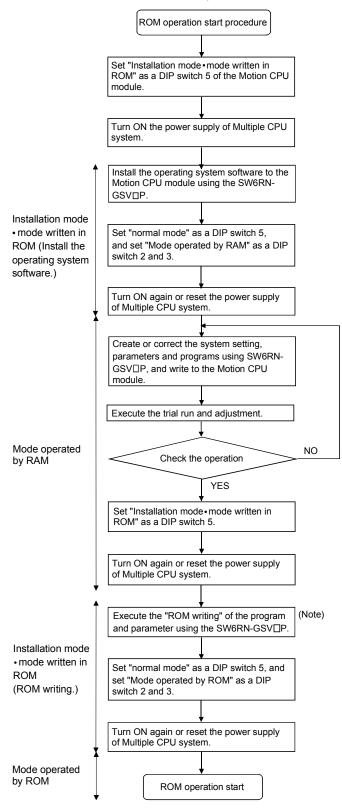

SV13	SV22
System setting data	System setting data
Each parameter for servo control	Each parameter for servo control
Servo program	Servo program
Motion SFC parameter	Motion SFC parameter
Motion SFC program	Motion SFC program
_	Mechanical system program (Note-1)
_	Cam data (Note-1)

(Note-1): Mechanical system program and cam data are "applicable data into ROM", when using the SV22.

(b) Operation at applicable data into ROM

When the ROM writing is requested to the Motion CPU module using "ROM writing" menu of SW6RN-GSV□P, the applicable data into ROM stored in the internal SRAM are batch-written to the internal FLASH ROM after erase of an user memory area of FLASH ROM built-in Motion CPU module. When the writing completes normally, the registration code (Note-2) is written and ROM writing ends.

The process overview is shown below.


(Note-1): "Registration codes" is used to judge whether the programs and parameters written in the internal FLASH ROM are normal or not.

POINT

- (1) When the RAM is selected with "Communication" "Transfer" menu of SW6RN-GSV□P, the SRAM memory built-in Motion CPU module is targeted at the "Installation mode • mode written in ROM" and "Mode operated by ROM".
- (2) The SRAM memory built-in Motion CPU module is targeted at the "Backup load" operation of SW6RN-GSV□P. Set the "Mode operated by ROM" after "ROM writing" for the ROM operation after "Backup load" at the CPU module replacement.
- (3) The internal FLASH ROM serves as a life in 100000 times writing. If it passes over a life, "writing error" will occur. After that, replace a module at the ROM operation.
- (4) The online change of Motion SFC program at the mode operated by ROM executes the Motion SFC program performed the online change from the next scanning. After that, it returns to the contents of Motion SFC program written in the internal FLASH ROM at the power supply on or system reset.

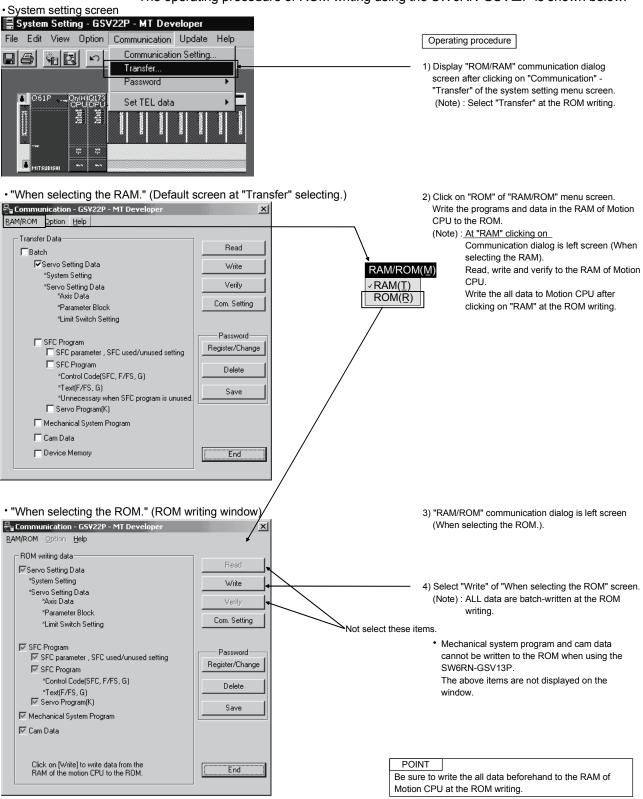
(3) ROM operation procedure

The flowchart to start the ROM operation is shown below.

(Note) : Do not execute the ROM writing for program and parameter while installing the operating system software.

(4) Operation at the "Mode operated by ROM"

Operation at the "Mode operated by ROM" is shown below.



POINT

If the ROM operation of a data written in the internal FLASH ROM is executed in the combination of the Motion CPU module for additional parameter (ROM operation function) and programming software by the operating system software not for additional parameter (ROM operation function), a Motion CPU WDT error (error code: 302) will occur and the ROM operation cannot executed. In this case, use the operating system software for additional parameter (ROM operation function). (Refer to Section 1.3.4.)

14.4 Operating Procedure of "ROM writing"

The operating procedure of ROM writing using the SW6RN-GSV□P is shown below.

MEMO		

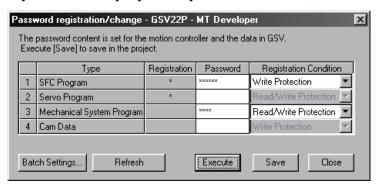
15 SECURITY FUNCTION

Refer to Section "1.3.4" for the correspondence version of the Motion CPU and the software.

This function is used to protect the user data of Motion CPU by registering a password. The following user data can be protected in this function.

"Write Protection" or "Read/Write Protection" can be set every user data.

User data	Details
SFC program	Motion SFC programs (Control code, text) are protected.
Servo program	Servo programs and program allocation are protected.
Mechanical system program	Mechanical system programs are protected. (SV22 use)
Cam data	Cam data are protected. (SV22 use)


POINT

Security function can be used only by combining with operating system software (for security function) and SW6RN-GSV□P (for security function).

15.1 Password Registration/change

There are two following methods to register/change a password.

- [Communication] → [Password] → [Register/Change]
- Password [Register/Change] key of the communication setting screen displayed by "[Communication] → [Transfer]".

Items	Details		
Туре	Type of user data		
Registration	• "*" is displayed when a password is registered in the Motion CPU.		
	Enter new password.		
Password	 Set a password by the alphanumeric character (ASCII) of 6 or less character Match case (Full-size character cannot be used.) 		
	A registration condition set in the Motion CPU is displayed.		
Registration	Write Protection: Not writing operation		
condition	Read/Write Protection: Not reading/writing operation		
	New registration condition can be selected by a password input.		

- (1) Procedure for password registration/change
 - (a) A password and registration condition set in the Motion CPU are displayed.
 - (b) Enter new password in the password column, and select a registration condition (Write Protection, Read/Write Protection). It leaves in a blank for the user data that does not register/change a password.
 - (c) Push [Execute] key to register a password in the Motion CPU at the password registration.
 - (d) Push [Execute] key to display a screen which checks old password at the password change. Enter old password, and push [Execute] key. New password will be registered in the Motion CPU by success of old password check. When the new password is the same as old password (change for only registration condition), [Password check] screen is not displayed.

POINT

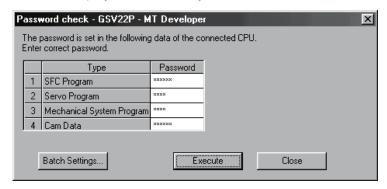
- (1) If an user has forgotten a registration password, clear a password (include user data) of Motion CPU by [Clear All]. However, if [Clear All] is executed, since all password data and user data will be cleared re-write user data in the Motion CPU.
- (2) ROM operation can be executed by user data registered a password. The password setting is also included in the ROM writing/reading data.
- (3) When a password is registered or changed, the password data in the project is also registered or changed. Be sure to save a password.
- (4) When an operation is stopped while a registration/change of password by reset or power OFF of Motion CPU, the data may not be registered. In this case, register or change a password again to restore the user data.

15.2 Password Clearance

There are two following methods to delete a password.

- [Communication] \rightarrow [Password] \rightarrow [Delete]
- Password [Delete] key of the communication setting screen displayed by "[Communication] → [Transfer]".

Items	Details
Туре	Type of user data
Registration	• "*" is displayed when a password is registered in the Motion CPU.
Password	Enter old password.


- (1) Procedure for password clearance
 - (a) The password data set in the Motion CPU are displayed.
 - (b) Enter old password in the password column, and push [Execute] key.
 - (c) A password set in the Motion CPU will be deleted by success of password check. (A blank is displayed in the registration column.)

POINT

- (1) When a password is deleted, the password data in the project is also deleted. Be sure to save a password.
- (2) When an operation is stopped while a clearance of password by reset or power OFF of Motion CPU, the data may not be deleted. In this case, delete a password again to restore the user data.

15.3 Password Check

When the user data program set in a password is corrected, the password check screen is displayed automatically.

Items	Details	
Туре	Type of user data	
Password	Enter old password.	

- (1) Procedure for password check
 - (a) Enter old password in the password column, and push [Execute] key.
 - (b) A password protection set in the Motion CPU will be released temporarily by success of password check, and the user data program can be corrected.
 - (c) A password is memorized until SW6RN-GSV□P ends. (Since a password is released automatically at the user data correction, a password check screen is not displayed.)

POINT

A password memorized by success of password check is valid even if the project change is executed while SW6RN-GSV□P is running. (A password check screen is not displayed.)

15.4 Password Save

There are two following methods to save a password in the project data.

- · Registration/change or clearance password
- A password read with user data by [Transfer] → [Read].

A password saved in the project data can be registered with user data, when the user data are written in the Motion CPU that does not set password by [Transfer] → [Write].

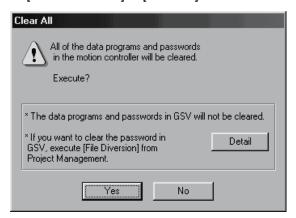
The updated password data is saved in the project data by the following operations.

- Password [Save] key of communication setting screen displayed by "[Communication] → [Transfer]".
- Password [Save] key of password registration/change/clearance screen.
- When the password registration/change/clearance screen ends, if there is non-saved password data, select "Yes" of save check screen.

(1) A password and registration conditions for each operation

Operation	Password and registration conditions
Read	When a password is set in the call source Motion CPU, the password contents are called and the password data in the project are written.
Write	When a password data is set in the project, if a password is not set in the write designation Motion CPU, the password contents are also written.
Verification	Password data in the project are not updated.
ROM writing	Password contents registered in the write designation Motion CPU are written in ROM.
Online change	Password contents of write designation Motion CPU are not updated.
Backup	It is saved in backup data including also the password contents registered in the call source Motion CPU. The password data in the project is not updated.
Load	Password contents in backup data are written in the write designation Motion CPU.
Password registration/ change	New password contents are written in the write designation Motion CPU. Password data in the project is also updated to new password contents.
Password clearance	A password is deleted from the write designation Motion CPU. A password is deleted also from the password data in the project.
Project diversion ([Project management]) - [File diversion])	The password data in diverting source project is not diverted.

The password data in the project is not saved in the project before password save.


POINT

Save a password after delete of password to delete the password data in the project. Or, create new project and divert user data from the project with password data to create the project without password data.

15.5 Clear All

This function is used to clear the all user data and password setting in Motion CPU. Clear all can be executed in the following operation.

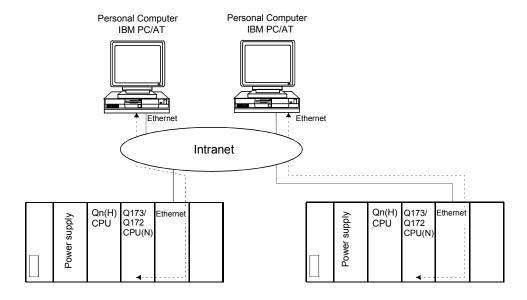
• Select "[Option] \rightarrow [Clear All]" of the communication screen displayed by "[Communication] \rightarrow [Transfer]".

POINT

- (1) Turn off the PLC ready flag (M2000) and test mode ON flag (M9075) to execute "Clear All".
- (2) Turn off the power supply of servo amplifier.
- (3) All user data and password setting are cleared at the "Clear All". Backup of user data and password setting data is recommended before clearance.

16. COMMUNICATIONS VIA NETWORK

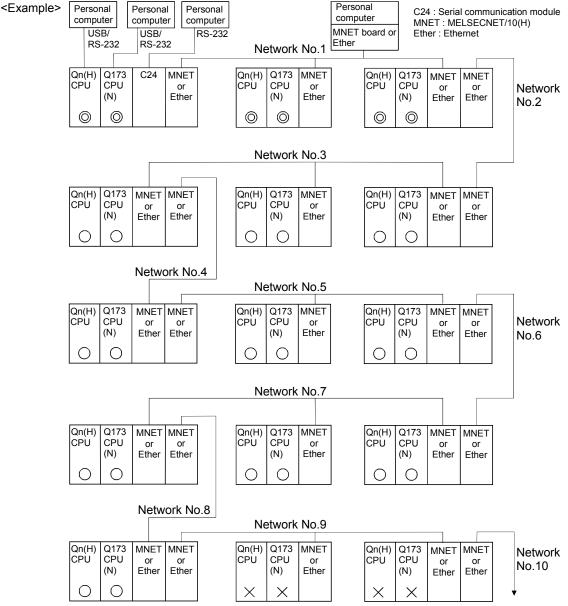
Refer to Section "1.3.4" for the correspondence version of the Motion CPU and the software.


The communication between the personal computer and the Motion CPU is possible via Q series Network module (MELSECNET/10(H), Ethernet, CC-Link, RS-232 and etc.) in the Motion CPU (Q173CPU(N)/Q172CPU(N)).

Refer to the following manuals for the specifications of each network modules of MELSECNET/10(H), Ethernet, CC-Link and Serial communication, the handling method.

- (1) MELSECNET/10(H) module : QJ71LP21-25, QJ71LP21G, QJ71BR11, QJ72LP25-25, QJ72LP25G, QJ72BR15
 - QCPU User's Manual(Hardware Design, Maintenance and Inspection)
 - Q Corresponding MELSECNET/H Network System Reference Manual(PLC to PLC network)
 - Q Corresponding MELSECNET/H Network System Reference Manual(Remote I/O network)
- (2) Ethernet interface module: QJ71E71, QJ71E71-B2, QJ71E71-100
 - Q Corresponding Ethernet Interface Module User's Manual(Hardware)
 - Q Corresponding Ethernet Interface Module User's Manual(Basic)
 - Q Corresponding Ethernet Interface Module User's Manual(Application)
 - Q Corresponding Ethernet Interface Module User's Manual(Web function)
 - Q Corresponding MELSEC Communication Protocol Reference Manual
- (3) CC-Link module: QJ61BT11
 - QJ61BT11 Control & Communication Link System Master/Local Module User's Manual(Hardware)
 - GX Configurator-CC Version 1 Operating Manual
 - CC- Link System Master/Local Module User's Manual
- (4) Serial communication module: QJ71C24, QJ71C24-R2
 - Serial Communication Module User's Manual(Hardware)
 - Q Corresponding Serial Communication Module User's Manual(Basic)
 - Q Corresponding Serial Communication Module User's Manual(Application)
 - Q Corresponding MELSEC Communication Protocol Reference Manual

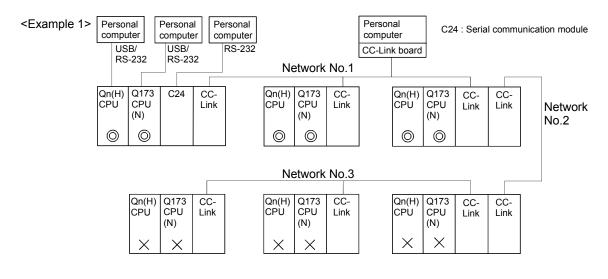
16.1 Specifications of The Communications via Network

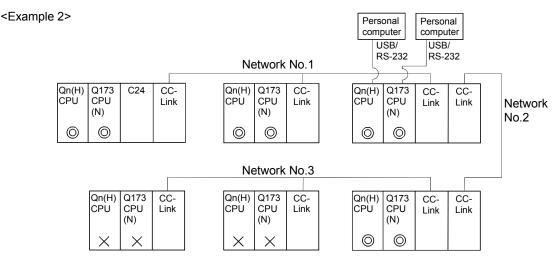

- (1) Communications via network of the Motion CPU is possible by SW6RN-GSV□P.
- (2) Access range of the communications via network of the Motion CPU is an access range equivalent to Qn(H)CPU. (Refer to Section "16.2 Access Range of The Communications via Network".)
- (3) By setting the routing parameter to the control CPU of the network module and the CPU which connected the peripheral devices in the network by MELSECNET/10(H) and Ethernet, it is possible to relay to 8 network points and communicate.
- (4) Because the Motion CPU cannot become the control CPU of the network module, there is not setting item of the network module and network parameter. However, when connecting with the CPU on the other network from the peripheral device which connected the Motion CPU, it needs to the setting of the routing parameter.
- (5) It can operate by remote control the monitor or program editing of the Motion CPU via the intranet using the Ethernet module.

16.2 Access Range of The Communications via Network

16.2.1 Network configuration via the MELSECNET/10(H) or the Ethernet

- (1) It can access the other CPU via the network from the programming software (GX Developer, SW6RN-GSV□P, etc.) of the personal computer connected with the CPU or serial communication module in USB/RS-232.
- (2) It can access the other CPU via the network from the programming software in the personal computer by connecting the personal computer equipped with Ethernet to MELSECNET/10(H) or Ethernet board to the Ethernet to MELSECNET/10(H) or Ethernet.
- (3) The access range of above (1) and (2) can be accessed to 8 network points by setting the routing parameter to the control CPU of the network module and the CPU which connected the personal computer.

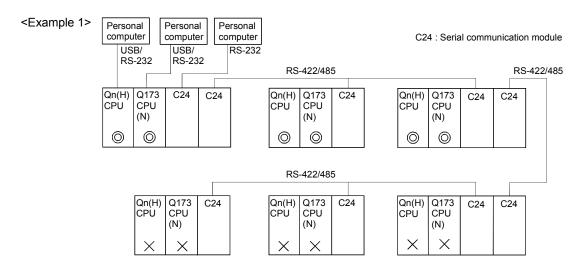

: Communication is possible

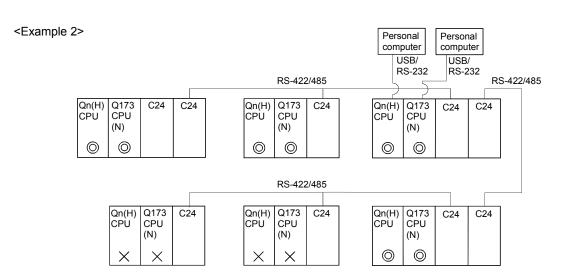

 $\widecheck{\bigcirc}$: Communication is possible (Setting of the routing parameter is necessary.)

 $\stackrel{\smile}{\times}$: Communication is impossible

16.2.2 Network configuration via the CC-Link

- (1) It can access the other CPU via the CC-link from the programming software (GX Developer, SW6RN-GSV□P, etc.) of the personal computer connected with the CPU or serial communication module in USB/RS-232.
- (2) It can access the other CPU via the CC-Link from the programming software in the personal computer by connecting the personal computer equipped with CC-Link board to the CC-Link.
- (3) The access range of above (1) is only the CPU on the CC-Link which a system connects it to, and it can select a CC-Link network to connect by specifying the I/O No. of the CC-Link module.
- (4) The access range of above (2) is only the CPU of the connected the CC-Link.



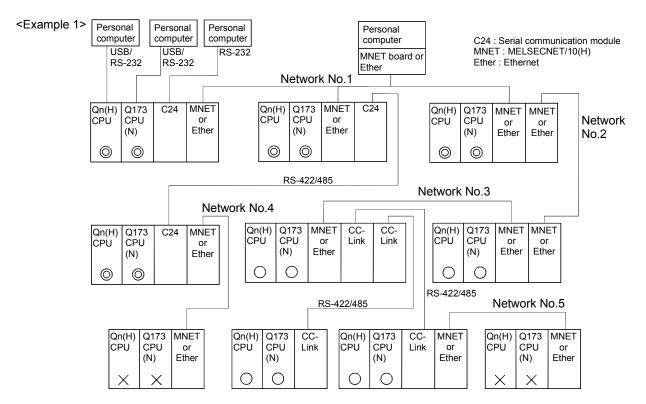


- (iii): Communication is possible
- : Communication is possible (Setting of the routing parameter is necessary.)
- X : Communication is impossible

16.2.3 Network configuration via the RS422/485

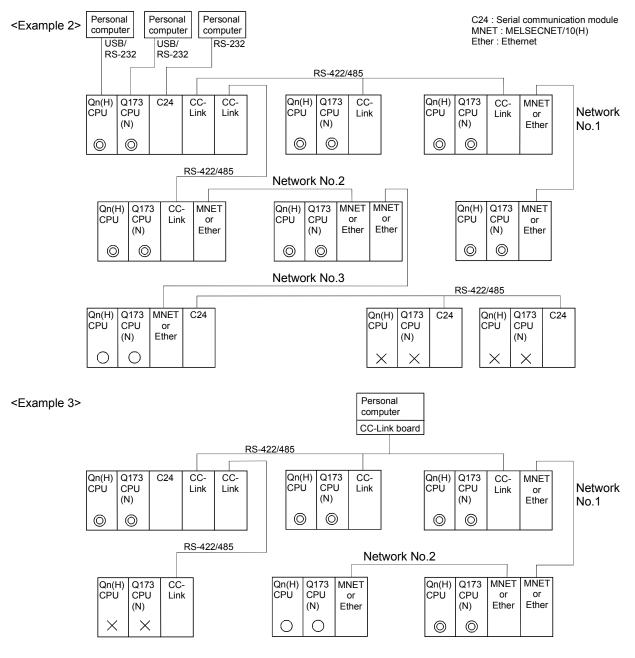
- (1) It can access the other CPU via the RS-422/485 from the programming software (GX Developer, SW6RN-GSV□P, etc.) of the personal computer connected with the CPU or serial communication module in USB/RS-232.
- (2) The access range of above (1) is only the CPU on the RS-422/485 which a system connects it to, and it can select RS-422/485 network to connect by specifying the I/O No. of the C24 module.

- (): Communication is possible
- Communication is possible (Setting of the routing parameter is necessary.)
- X : Communication is impossible


16.2.4 Network configuration which MELSECNET/10(H), Ethernet, CC-Link, RS-422/485 were mixed

(1) When the MELSECNET/10(H) or Ethernet is defined as "Network" and CC-Link or RS-422/485 is defined as "Link", combination of whether to be able to access from the programming software (GX Developer, SW6RN-GSV□P, etc.) is shown below.

Network communications	Usable/ unusable
Programming software \rightarrow CPU (C24) \rightarrow Network \rightarrow Link \rightarrow CPU	0
Programming software \rightarrow CPU (C24) \rightarrow Link \rightarrow Network \rightarrow CPU	0
Programming software $ ightarrow$ Network $ ightarrow$ Link $ ightarrow$ CPU	0
Programming software $ ightarrow$ Link $ ightarrow$ Network $ ightarrow$ CPU	0
Programming software \rightarrow CPU (C24) \rightarrow Network \rightarrow Link \rightarrow Network \rightarrow CPU	×
Programming software \rightarrow CPU (C24) \rightarrow Link \rightarrow Network \rightarrow Link \rightarrow CPU	×
Programming software $ ightarrow$ Network $ ightarrow$ Link $ ightarrow$ Network $ ightarrow$ CPU	×
Programming software \rightarrow Link \rightarrow Network \rightarrow Link \rightarrow CPU	×


○ : Usable × : Unusable

- (2) It can be accessed to 8 network points by setting the routing parameter in the "Network".
- (3) Because routing cannot access, it can access only the connected network. The connected network can be selected by specifying the I/O No. of the module.

(iii): Communication is possible

○ : Communication is possible (Setting of the routing parameter is necessary.)
 × : Communication is impossible

(i): Communication is possible

 $\stackrel{\cdot}{\bigcirc}$: Communication is possible (Setting of the routing parameter is necessary.)

X : Communication is impossible

MEMO			

17. MONITOR FUNCTION OF THE MAIN CYCLE

Refer to Section "1.3.4" for the correspondence version of the Motion CPU and the software.

- (1) Information for main cycle of the Motion CPU processing (process cycle executed at free time except for motion control) is stored to the special register.
- (2) Since the automatic refresh of shared CPU memory and normal task of Motion SFC program are executed in the main cycle, make it reference for process time, etc. to program.
- (3) There are following methods to shorten a main cycle.
 - (a) Lengthen an operation cycle setting.
 - (b) Reduce the number of event task programs to execute in the Motion SFC program.
 - (c) Reduce the number of normal task programs to execute simultaneously in the Motion SFC program.
 - (d) Reduce the number of automatic refresh points of shared CPU memory.
- (4) When a main cycle is lengthened (more than 1.6[s]), a WDT error may occur in the Motion CPU.
- (5) Details of main cycle monitor register is shown below.

No.	Name	Meaning	Details
D9017	Scan time		 Current scan time is stored in the unit 1[ms]. Setting range (0 to 65535[ms])
D9019	Maximum scan time	Maximum scan time (1ms units)	Maximum main cycle is stored in the unit 1[ms]. Setting range (0 to 65535[ms])

MEMO		

18. SERVO PARAMETER READING FUNCTION

Refer to Section "1.3.4" for the correspondence version of the Motion CPU and the software.

- (1) When the servo parameters are changed, the Motion CPU will be automatically read the servo parameters and reflected them to the servo parameter storage area in the Motion CPU. Therefore, an operation to read servo parameters is unnecessary in the following cases.
 - (a) The parameters are changed by auto tuning.

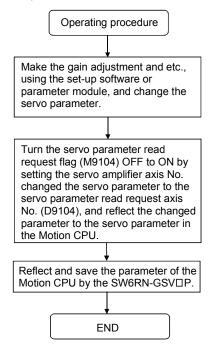
POINT

If the power supply of Motion CPU is turned off/reset or the power supply of servo amplifier is turned off immediately after change, it may not be reflected.

(2) After executing the servo parameter reading function, when it needs to reflect the servo parameters changed to the SW6RN-GSV□P, read the servo parameters from the Motion CPU and save data.

18.1 About The Servo Parameter Read Request Devices

- (1) Set the axis No. of servo amplifier to read a parameter in the servo parameter read request axis No. (D9104) and turn the servo parameter read request flag (M9104) ON for reading of the servo parameter from servo amplifier.
- (2) While the servo parameter reading flag (M9105) is turned on, the servo parameter read request flag does not become valid. Use this condition as an interlocks.
- (3) Reading of servo parameter from servo amplifier becomes valid at the turning OFF to ON of the servo parameter read request flag.
- (4) The servo parameter read request flag is not turned off automatically. Execute the device OFF processing by the user side.
- (5) After executing the read function of the servo parameter from servo amplifier, when the servo parameter read request is executed toward the other axis, turn the servo parameter read request flag (M9104) OFF to ON, set the correspondence axis in the servo parameter read request axis No. (D9104) and turns the servo parameter read request flag (M9104) OFF to ON.
- (6) After executing the read function of the servo parameter from servo amplifier, when the servo parameter read request is executed toward the same axis again, turn the servo parameter read request flag (M9104) ON to OFF, and turn the servo parameter read request flag (M9104) OFF to ON again.


- (7) When the servo parameter read request flag (M9104) turns OFF to ON, if the servo parameter read request axis is not used or the power is off, the reading of the servo parameter from servo amplifier is not executed.
- (8) When the servo parameter read request axis No. (D9104) is outside of the setting range, it becomes "No operation" even if the servo parameter read request flag (M9104) turns OFF to ON.

(9)	The list of the servo	parameter read request device is shown below	١.
-----	-----------------------	--	----

No.	Name	Meaning	Details	
M9104	Servo parameter read request flag	OFF to ON : Servo parameter read.	The servo parameter of the servo parameter read request axis set as D9104 is reflected in the Motion CPU from the servo amplifier at the time of off to on.	
M9105	Servo parameter reading flag	ON: Servo parameter reading. OFF: Except the servo parameter reading.	Turned on while reading the servo parameter from the servo amplifier to the Motion CPU. After reading is turned off automatically.	
D9104	Servo parameter read request axis No.		 Set the axis No. of servo amplifier to read the servo parameter. Setting range Q173CPU(N): 1 to 32 (Axis1 to 32) Q172CPU(N): 1 to 8 (Axis1 to 8) 	

18.2 Operating Procedure of The Servo Parameter Reading Function

An operation procedure which the servo parameter read by the reading function of the servo parameter is reflected on the SW6RN-GSV□P is shown below.

19. ERROR CODE LISTS

When an error occurs while the Motion CPU is running, the error information is stored in the error history register (#8000 to #8063), special relay M and special register D.

19.1 Reading Procedure for Error Codes

When an error occurs while the Motion SFC program is operating, the error code and error message can be read by the SW6RN-GSV□P.

The procedure for reading error codes by the SW6RN-GSV□P is shown below.

- (1) Start the SW6RN-GSV□P.
- (2) Connect the Q173CPU(N)/Q172CPU(N) to the peripheral devices.
- (3) Select [New project] create the project- [Read from Motion CPU] Menu by the SW6RN-GSV□P, and also read the project from the Motion CPU.
- (4) Select the [Monitor] [Error list] [Motion SFC error history] and [Error list] Menu.
- (5) Display the error code and error message.

Refer to the applicable the help of the SW6RN-GSV \square P for details of the SW6RN-GSV \square P operating method.

The occurrence date of the Motion CPU error history uses a watch function with the internal Motion CPU.

Make the set of the clock data and the clock data read request (M9028) by user programs.

As for the self-diagnosis error code, confirmation can be done by the PC diagnosis of GX Developer.

Refer to the GX Developer operation manual for the GX Developer operation procedure.

19

19.2 Motion SFC Error Code List

Eight errors that occurred in the past during the Motion SFC control are stored in the "error history devices (#8000 to #8063)" of the motion registers. (Check by SW6RN-GSV□P).

The "error codes" for the Motion SFC program are shown below. Refer to the "Q173CPU(N)/Q172CPU(N) Motion controller (SV13/SV22) Programming Manual (REAL MODE)"/ "Q173CPU(N)/Q172CPU(N) Motion controller (SV22) Programming Manual (VIRTUAL MODE)" for minor errors, major errors, servo errors and servo program setting errors.

Table 19.1 Motion SFC dedicated devices (#8000 to #8063)

Device No.	Signal name			Signal direction		Refresh	Fetch	
Device No.	Signarn	anie			Status	Command	cycle	cycle
#8000 to	Seventh error information in past (Oldest error information)	Motion SFC error history (8 errors) (64 points)						
#8008		No.	Signal r					
to	Sixth error information in past	+0	Error Motior program No					
#8016		1	Error type					
to	Fifth error information in past	2 Error program No.						
#8024 to	Fourth error information in past	Error block No. / 3 Motion SFC list / Line No. / Axis No.				At error		
#8032		4	4 Error code		0	_	occur-	_
to	Third error information in past	5		Year/ Month			rence	
#8040 to	Second error information in past	6	6 ccurrence time Day/					
		7		Minute/ Second				
#8048 to	First error information in past		1					
#8056 to #8063	Latest error information							

Table 19.2 Motion SFC program start errors (16000 to 16099)

Fanor and a		Error factor		Corrective Action	
Error code	Name	Description	Error Processing	Corrective Action	
16000	PLC ready OFF (SFCS)	 At a start by S(P).SFCS instruction, PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF. 		Provide ON of the PLC ready flag (M2000) and PCPU ready flag (M9074) as start interlocks.	
16001	Motion SFC program No. error (SFCS)	 At a start by S(P).SFCS instruction, the range of 0 to 255 is specified in the Motion SFC program No 	The specified Motion SFC	Check the Motion SFC program No., and correct a PLC program.	
16002	None Motion SFC program (SFCS)	 At a Motion SFC program start by S(P).SFCS instruction, the specified Motion SFC program does not exist. 	program does not start.	Check the Motion SFC program No., and correct a PLC program, or create the non-created Motion SFC program.	
16003	Double start error	• At a Motion SFC program start by S(P).SFCS instruction, the same Motion SFC program starts.		Double start should be managed on the user side. Provide the user's starting signal as a start interlock in the PLC program.	
16004	PLC ready OFF (GINT)	• S(P).GINT instruction was executed with PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF.	The active step of Motion SFC program executed by "PLC interrupt" is not processed.	Provide ON of PLC ready flag (M2000) and PCPU ready flag (M9074) as S(P).GINT execution interlocks.	
16005	None Motion SFC program	At a Motion SFC program start by automatic start setting or GSUB, the specified Motion SFC program does not exist.	The specified Motion SFC program does not start. When it started by GSUB, the start source Motion SFC also stop to execute.	Check the Motion SFC program No., and correct a program, or create the non-created Motion SFC program.	
16006	Double start error	 At a Motion SFC program start by automatic start setting or GSUB, the same Motion SFC program is already starting. 		Double start should be managed on the user side. Provide the user's starting signal as an interlocks in the transition condition.	
16007	Online change	 The Motion SFC program which is rewriting the Motion SFC chart by online change was started. 	The specified Motion SFC program does not start.	Start after the completion of online change.	

Table 19.3 Motion SFC interpreter detection errors (16100 to 16199)

Error code		Error factor	Fran Dragoning	Corrective Action
Elloi code	Name	Description	Error Processing	Corrective Action
16100	Motion SFC program	The code exists but is grammatically erroneous. Though not within branch-coupling, a label/jump code within selective branch-coupling or a label/jump code within parallel branch-coupling exists.		
16101	error (grammatical error)	 Selective branch destinations are all headed by other than SFT or WAIT transitions. 		
16102	,	WAITONWAITOFF is not followed by a motion control step. (However, this is permitted to a pointer (Pn) or jump (Pn).)	Stop to execute the applicable Motion SFC	The Motion SFC program code is corrupted.
16103		 A parallel branch is followed by an END step without a parallel coupling. 	program No For the subroutine called program, the call source program also stops to	Turn PLC ready flag (M2000) OFF and write the Motion SFC program again.
16104	Motion SFC code error	An impossible code is used. The internal code is corrupted.		Or, replace the external battery if it passed over a life.
16105	Jump code error 1	Internal code (list code) error in jump destination information	execute.	
16106	Jump code error 2	Internal code (label information) error in jump destination information		
16107	Jump code error 3 Jump code error 4	Internal code (label No.) error in jump destination information		
16108		Internal code (label address) error in jump destination information		
16109	Jump destination error	The specified pointer does not exist at the jump destination.		

Table 19.3 Motion SFC interpreter detection errors (16100 to 16199) (continued)

Francodo		Error factor	Free Dragging	Corrective Action
Error code	Name	Description	Error Processing	Corrective Action
16110	GSUB setting error 1	The self program was called/started by GSUB.		GSUB cannot call its own or main program.
16111	GSUB setting error 2	The main program was called/started by GSUB.	Stop to execute the applicable Motion SFC program No For the subroutine called program, the call source program also stops to execute.	Correct the Motion SFC program.
16112	Parallel branch nesting excess	Nesting of parallel branches within a parallel branch route exceeded four levels.		The nesting of parallel branch is up to four levels. Subroutine the branch destination processing and correct the program.
16113	Executed task error	An attempt was made to execute a motion control step K with an event or NMI task.		Motion control steps cannot be executed in the Motion SFC programs executed by the event and NMI tasks.
16120	Simultaneously active step count excess	The number of simultaneously active steps exceeded 256 during execution.		Number of simultaneously active steps is maximum 256. Re-examine the Motion SFC program.

Table 19.4 Motion SFC program run errors (16200 to 16299)

Error code	Error factor		Error Processing	Corrective Action	
Elloi code	Name	Description	Lifor Processing	Corrective Action	
16200	No specified program (Kn)	The servo program (Kn) specified with the motion control step does not exist.		Create the specified servo program.	
16201	No specified program (Fn/FSn)	The operation control program (Fn/FSn) specified with the operation control step does not exist.		Create the specified operation control program.	
16202	No specified program (Gn)	The program (Gn) specified with the transition does not exist.	Stop to execute the applicable Motion SFC program No For the subroutine called program, the call source program also stops to execute.	Create the specified transition program.	
16203	No specified program (Motion SFC)	The Motion SFC program specified with the clear step does not exist.		Correct the specified Motion SFC program name or create the specified Motion SFC program.	
16204	No setting of operation expression/condition al expression	The program (Gn) specified with the transition does not have a conditional expression setting.		Be sure to set a conditional expression in the last block of the transition program.	
16205	Fn/FSn program code error	Internal code error in the operation control program (Fn/FSn)		The Motion SFC program code is corrupted. Turn PLC ready flag (M2000) OFF and write	
16206	Gn program code error	Internal code error in the transition program (Gn)		the Motion SFC program again. Or, replace the external battery if it passed over a life.	
16207	Specified the invalid device	The invalid device (T, C) in the program is set up.		Correct the program which does set the effective device.	

Table 19.5 Operation control/transition execution errors (16300 to 16599)

Error code	Name	Error factor Description	Error Processing	Corrective Action
16301	Event task enable (EI) execution error	Event task enable was executed at except for the normal task.		Event task enable may be executed in the normal task only. Correct the program.
16302	Event task disable (DI) execution error	Event task disable was executed at except for the normal task.		Event task disable may be executed in the normal task only. Correct the program.
16303	Block transfer (BMOV) execution error	The cam data of the cam No. specified with (D) or (S) is not yet registered to the Motion controller. The resolution of the cam No. specified with (D) or (S) differs from the number of transferred words specified with (n). Solvential (S) to (S)+(n-1) is outside the device range. On to (D)+(n-1) is outside the device range. On is 0 or a negative number. Solvential is a bit device and the device number is not a multiple of 16. Disa bit device and the device number is not a multiple of 16. PX/PY is set in (S) to (S)+(n-1).	The block processing on executing is stopped and	Correct the program so that cam data is that of the already registered cam No Correct the program to match (n) with the cam resolution. Change (n) so that the block transfer range is within the device range. Change (n) to a positive number. When (S) or (D) is a bit device, set the device number to be multiple of 16. When (S) or (D) is a bit device, do not set PX/PY.
16304	Time to wait (TIME) execution error	 The device No. which indirectly specifies (S) is illegal. The (S) data is outside the range 0 to 2147483647. 		 Correct the program so that the device No. which indirectly specifies (S) is proper. Correct the program so that the (S) data is within the range of 0 to 2147483647.
16305	Same data block transfer (FMOV) execution error	 (D) to (D)+(n-1) is outside the device range. (n) is 0 or a negative number. (S) is a bit device and the device number is not a multiple of 16 (D) is a bit device and the device number is not a multiple of 16. PX/PY is set in (S). PX/PY is set in (D) to (D)+(n-1). 		 Change (n) so that the block transfer range is within the device range. When (S) or (D) is a bit device, set the device number to be multiple of 16. When (S) or (D) is a bit device, do not set PX/PY.
16308	Speed change request (CHGV) execution error		the next block is executed.	Correct the program so that the specified axis
16309	Torque limit value change request (CHGT) execution error	The specified axis No. is outside the range.		No. is within the range.
16316	Assignment (=) execution error	 The (S) data is outside the range of the data type of (D). The device No. which indirectly specifies (D) is illegal. 		 Correct the program so that the (S) data is within the range of the data type of (D). Correct the program so that the device No. which indirectly specifies (D) is proper.
16320 16321	Operation (/) execution error Remainder (%)	• The divisor is 0.		Correct the program so that the divisor is other than 0.
16322	Device set (SET) execution error			
16333	Device reset (RST) execution error			Correct the program so that the device No.
16334	Device set (SET=) execution error	The device No. which indirectly specifies (D) is illegal. (D) is a device which is write-disabled.		which indirectly specifies (D) is proper. • Correct the program to set a write-enabled
16335 16336	Device reset (RST=) execution error Device output	(D) is a device which is write-disabled.		device at (D).
16337	(DOUT) execution Device input (DIN) execution error			
16338	Bit device output (OUT=) execution error	The device No. which indirectly specifies (D) is illegal.		Correct the program so that the device No. which indirectly specifies (D) is proper.

Table 19.5 Operation control/transition execution errors (16300 to 16599) (continued)

Crror code		Error factor	Fran Draggains	Corrective Action
Error code	Name	Description	Error Processing	Corrective Action
16380	Signed 16-bit integer value conversion (SHORT) execution error	The (S) data is outside the signed 16-bit integer value range.		Correct the program so that the (S) data is within the signed 16-bit integer value range.
16337	Device input (DIN) execution error	The device No. which indirectly specifies (D) is		Correct the program so that the device No.
16338	Bit device output (OUT=) execution error	illegal.		which indirectly specifies (D) is proper.
16380	Signed 16-bit integer value conversion (SHORT) execution error	The (S) data is outside the signed 16-bit integer value range.		Correct the program so that the (S) data is within the signed 16-bit integer value range.
16381	Unsigned 16-bit integer value conversion (USHORT) execution error	The (S) data is outside the unsigned 16-bit integer value range.	The block processing on executing is stopped and the next block is executed.	Correct the program so that the (S) data is within the unsigned 16-bit integer value range.
16382	Signed 32-bit integer value conversion (LONG) execution error	The (S) data is outside the signed 32-bit integer value range.		Correct the program so that the (S) data is within the signed 32-bit integer value range.
16383	Unsigned 32-bit integer value conversion (ULONG) execution error	The (S) data is outside the unsigned 32-bit integer value range.		Correct the program so that the (S) data is within the signed 32-bit integer value range.
16398	Tangent (TAN) execution error	• (S) is 90+(180*n). (n is an integer)		Correct the program so that (S) is not 90+(180*n). (n is an integer)
16399	Arcsine (ASIN) execution error	(O) in a state the second of 4 0 to 4 0		Correct the program so that (S) is within the
16400	Arccosine (ACOS) execution error	(S) is outside the range of -1.0 to 1.0.		range of -1.0 to 1.0.
16402	Square root (SQRT) execution error	• (S) is a negative number.		Correct the program so that (S) is a positive number.
16403	BCD→BIN conversion (BIN) execution error	Any digit of (S) has a value other than 0 to 9.		Correct the program so that each digit of (S) is 0 to 9.
16404	BIN→BCD conversion (BCD) execution error	The (S) value is outside the range where BIN data can be converted into BCD data.		Correct the program so that the (S) value is within the range.
16405	Natural logarithm (LN) execution error	• (S) is 0 or a negative number.		Correct the program so that (S) is a positive number.

Table 19.5 Operation control/transition execution errors (16300 to 16599) (continued)

Error code	Error factor		Error Processing	Corrective Action	
Litoi code	Name	Description	Endi Frocessing	Corrective Action	
16420	Write device data to shared CPU memory of the self CPU (MULTW) execution error	 Number of words (n) to be written is outside the range of 1 to 256. The shared CPU memory address (D) of self CPU of the writing destination device is outside the range (800H to FFFH) of the shared CPU memory address. The shared CPU memory address (D) of self CPU of the writing destination device + number of words (n) to be written is outside the range (800H to FFFH) of the shared CPU memory address. First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range. MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned on. (D1) is a write-disabled device. (S) is a bit device and the device number is not a multiple of 16. PX/PY is set in (S) to (S)+(n-1). 		 Correct the program so that the number of words (n) to be written is within the range of 1 to 256. Correct the program so that the shared CPU memory address (D) of self CPU of the writing destination is within the range of shared CPU memory address. Correct the program so that the shared CPU memory address (D) of self CPU of the writing destination + number of words (n) to be written is within the range of shared CPU memory address. Correct the program so that first device No. (S) which writing data are stored + number of words (n) to be written is within the device range. Execute MULTW instruction again after the complete bit device of MULTW instruction is turned on. Correct the program to set a write-enabled device at (D1). When (S) is a bit device, set the device number to be multiple of 16. When (S) is a bit device, do not set PX/PY. 	
16421	Read device data from shared CPU memory of the other CPU (MULTR) execution error	 Number of words (n) to be read is outside the range of 1 to 256. The shared CPU memory first address (S2) of the data which it will be read is outside the range (000H to FFFH) of the shared CPU memory address. The shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is outside the range (000H to FFFH) of the shared CPU memory address. First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range. Except 3E0H/3E1H/3E2H/3E3H is set at (S1). The self CPU is specified with (S1). The CPU which reads is resetting. The errors are detected in the CPU which read. (D) is a bit device and the device number is not a multiple of 16. PX/PY is set in (D) to (D)+(n-1). 	The block processing in execution is stopped and the next block is executed.	 Correct the program so that the number of words (n) to be read is within the range of 1 to 256. Correct the program so that the shared CPU memory first address (S2) of the data which it will be read is within the range of shared CPU memory address. Correct the program so that the shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is within the range of shared CPU memory address. Correct the program so that first device No. (D) which stores the reading data + number of words (n) to be read is within the device range. Correct the program so that 3E0H/3E1H/3E2H/3E3H is set at (S1). Correct the program so that the self CPU is not specified with (S1). Check that the reset flag (M9240 to M9243) is OFF, then correct the program to execute the MULTR instruction. If the errors are detected in the CPU which read, exchange the CPU. When (D) is a bit device, set the device number to be multiple of 16. When (D) is a bit device, do not set PX/PY. 	

Table 19.5 Operation control/transition execution errors (16300 to 16599) (continued)

Error code	No	Error factor	Error Processing	Corrective Action
16422	Write device data to intelligent function module/special function module (TO) execution error	Number of words (n) to be written is outside the range of 1 to 256. Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution. Abnormalities of the intelligent function module/ special function module were detected at the instruction execution. I/O No.s specified with (D1) differ from the intelligent function module/special function module controlled by the self CPU. The address specified with (D2) is outside the buffer memory range. First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range. (S) is a bit device and the device number is not a multiple of 16. PX/PY is set in (S) to (S)+(n-1).	The block processing in execution is stopped and the next block is executed.	Correct the program so that the number of words (n) to be written is within the range of 1 to 256. Replace the intelligent function module/ special function module if there is a fault. Correct the program so that the first I/O No.s specified with (D1) is intelligent function module/special function module controlled by the self CPU. Correct the program so that the address specified with (D2) is within the buffer memory range. Correct the program so that first device No. (S) which writing data are stored + number of words (n) to be written is within the device range. When (S) is a bit device, set the device number to be multiple of 16. When (S) is a bit device, do not set PX/PY.
16423	Read device data from intelligent function module/special function module (FROM) execution error	Number of words (n) to be read is outside the range of 1 to 256. Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution. Abnormalities of the intelligent function module/ special function module were detected at the instruction execution. I/O No.s specified with (S1) differ from the intelligent function module/special function module controlled by the self CPU. The address specified with (S2) is outside the buffer memory range. First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range. (D) is a bit device and the device number is not a multiple of 16. PX/PY is set in (D) to (D)+(n-1).		Correct the program so that the number of words (n) to be read is within the range of 1 to 256. Replace the intelligent function module/ special function module if there is a fault. Correct the program so that I/O No.s specified with (S1) is intelligent function module/special function module controlled by the self CPU. Correct the program so that the address specified with (S2) is within the buffer memory range. Correct the program so that first device No. (D) which stores the reading data + number of words (n) to be read is within the device range. When (D) is a bit device, set the device number to be multiple of 16. When (D) is a bit device, do not set PX/PY.
16462	Indirectly specified 16-bit motion device (#(n)) read error	The indirectly specified device No. is outside the range.		
16463	Indirectly specified 32-bit motion device (#(n)L) read error	The indirectly specified device No. is outside		
16464	Indirectly specified 64-bit motion device (#(n)F) read error	the range or an odd number.		
16465	Indirectly specified 16-bit data register (D(n)) read error	The indirectly specified device No. is outside the range.		Correct the program so that the indirectly specified device No. is proper.
16466	Indirectly specified 32-bit data register (D(n)L) read error	The indirectly specified device No. is outside		
16467	Indirectly specified 64-bit data register (D(n)F) read error	the range or an odd number.		

Table 19.5 Operation control/transition execution errors (16300 to 16599) (continued)

Error code	Error factor		Error Processing	Corrective Action	
	Name	Description	2	2533470 / 104011	
16468	Indirectly specified 16-bit link register (W(n)) read error	The indirectly specified device No. is outside the range.			
16469	Indirectly specified 32-bit link register (W(n)L) read error	The indirectly specified device No. is outside			
16470	Indirectly specified 64-bit link register (W(n)F) read error	the range or an odd number.			
16486	Indirectly specified input relay (X(n)) read error				
16487	Indirectly specified output relay (Y(n)) read error				
16488	Indirectly specified internal/latch relay (M(n)/L(n)) read error	-			
16489	Indirectly specified link relay (B(n)) read error			Correct the program so that the indirectly specified device No. is proper.	
16490	Annunciator (F(n)) read error				
16516	Indirectly specified 16-bit batch input relay (X(n)) read error				
16517	Indirectly specified 32-bit batch input relay (X(n)) read error	The indirectly specified device No. is outside			
16518	Indirectly specified 16-bit batch output relay (Y(n)) read error	the range or is not a multiple of 16.			
16519	Indirectly specified 32-bit batch output relay (Y(n)) read error				
16520	Indirectly specified 16-bit batch internal/latch relay (M(n)/L(n)) read error	The indirectly specified device No. is outside the range or is not a multiple of 16.			
16521	Indirectly specified 32-bit batch internal/latch relay (M(n)/L(n)) read error				

Table 19.5 Operation control/transition execution errors (16300 to 16599) (continued)

Error codo		Error factor	Fran Dragogoina	Corrective Action
Error code	Name	Description	Error Processing	Corrective Action
16522	Indirectly specified 16-bit batch internal/latch relay (B(n)) read error			
16523	Indirectly specified 32-bit batch internal/latch relay (B(n)) read error	The indirectly specified device No. is outside the range or is not a multiple of 16	execution is stopped and	Correct the program so that the indirectly specified device No. is proper.
16524	Indirectly specified 16-bit batch annunciator (F(n)) read error			
16525	Indirectly specified 32-bit batch annunciator (F(n)) read error			

19.3 Motion SFC Parameter Errors

Motion SFC parameters are checked by SW6RN-GSV \square P.

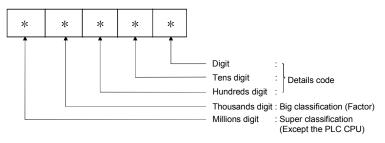
Table 19.6 PLC ready flag (M2000) OFF \rightarrow ON errors (17000 to 17009)

Francodo	Error factor		Error Drococcing	Corrective Action
Error code	Name	Description	Error Processing	Corrective Action
17000	Normal task consecutive transition count error	The normal task's consecutive transition count of the Motion SFC program started by the normal task is outside the range 1 to 30.	The initial value of 3 is used for control.	
17001	Event task consecutive transition count error	The set number of consecutive transitions of the Motion SFC program started by the event task is outside the range 1 to 10.	The initial value of 1 is used for control.	Turn PLC ready flag (M2000) OFF, make correction to set the value within the range, and write it to the CPU.
17002	NMI task consecutive transition count error	The set number of consecutive transitions of the Motion SFC program started by the NMI task is outside the range 1 to 10.		

Table 19.7 SFC Program start errors (17010 to 17019)

Error code	Error factor		E Di	Compating Asting
	Name	Description	Error Processing	Corrective Action
17010	Executed task setting is illegal	Among the normal, event and NMI tasks, more than one or none of them has been set.	task) is used for control.	Turn PLC ready flag (M2000) OFF, make correction, and write a correct value to the CPU.
	Executed task setting is illegal (event)	Two or more fixed cycles of the event task have been set.		

MEMO		


19.4 Multiple CPU Error Codes

19.4.1 Self-diagnosis error code

This section explains the self-diagnosis error code. A self-diagnosis error code is stored in D9008.

And, it can be confirmed with device monitor of the PC diagnosis/SW6RN-GSV \square P of GX Developer.

Each digit is defined as the error code as follows.

	Big classification				
1	Internal hardware				
2	Handling				
3	Parameter				
4	Program				
5	Watch timer				
6 The correspondence which becomes doub					
7	Indicates Multiple CPU				
8	_				
9	Outside diagnosis				

The characteristic error of Motion CPU is 10000 (the error code which occurs except the PLC CPU).

Table 19.8 Multiple CPU errors which occurs in the Motion CPU (1000 to 10000)

Middle		Error	Error information	Occur			status	Operating	Diagnostic	
classification	Error messages	code	Classification code	Single composition	Multiple composition	RUN	ERROR	status of CPU	timing	
		1000								
		1001								
		1002								
	MAIN CPU DOWN	1003	_	_	_	OFF	Flickers	Stop	Always	
	W W C C C C C C C C C C C C C C C C C C	1004				011	1 HOROTO	Сюр	7 awayo	
051141 15		1005								
CPU (hard) error		1006								
CITOI		1007								
		1008								
		1009								
	In the CPU, RAM error (RAM ERROR)	1105	_	0	0	OFF	Flickers	Stop	At power supply ON/at reset	
	FUSE BREAK OFF	1300	_	_	_	OFF/ON	Flickers/ON	Stop/Continue (Note-7)	Always	
Module error (hard)	SP. UNIT DOWN	1401	Module No.	0	0	OFF	Flickers	Ston	At power supply ON/at reset	
		1413	Module No.	0	0	OFF	Flickers	Stop	Always	
		1414	Module No.	0	0	OFF	Flickers	Stop	Always	
Base	Q bus error (CONTROL-BUS	1415	Base No. (Note-2)	0	0	OFF	Flickers	Stop	Always	
	ERROR)	1416	Module No. (Note-1)	I	0	OFF	Flickers	Stop	At power supply ON/at reset	
Power supply	Detection of AC/DC DOWN (AC/DC DOWN)	1500	_	0	0	ON	OFF	Continue	Always	
Battery	(BATTERY ERROR)	1600	Drive name	0	0	ON	OFF	Continue	Always	
		1601					. ALM O ON			
		2121								
Handling the intelligent	Intelligent function	2124	Module No.							
function module/	module installation error (SP. UNIT LAY ERROR)	2125		_	©	OFF	Flickers	e I Ston	At power supply	
		2126	Module No. (Note-1)						ON/at reset	

⁽Note-1): CPU No. is stored in slot No. of the common information classification.

⁽Note-2): Base No. in "common information classification code" of "error information classification code" is 0: CPU base, 1 to 7: Number of extension bases.

⁽Note-3): Because a stop error or CPU No. except CPU No. that it was reset becomes MULTI CPU DOWN simultaneously, a stop error or CPU No. except CPU No. that it was reset may store in the classification of error information depending on timing.

⁽Note-4): When an error occurs in the Motion CPU and so on except PLC CPU, if a PC diagnosis is made in the CPU except PLC CPU from GX Developer via PLC CPU, the error code "10000" is indicated.

⁽Note-5): The Motion SFC error detection signal (M2039) turned on at the error detection. A self-diagnosis error flag (M9008) and a diagnosis error flag (M9010) do not turn on at the error detection. The error code "10000" being set in D9008 is reset in the Motion SFC error detection signal (M2039) ON → OFF.

⁽Note-6): MOTION RUN LED turns off at the stop error occurrence. (The condition of RUN LED does not change.)

⁽Note-7): Operating status of CPU at the error occurrence can be set in the parameter. (LED display also changes continuously.)

Error code	Error contents and cause	Corrective action	Remark		
1000					
1001					
1002		(1) Measure noise level.			
1003	Run-away or failure of main CPU	(2) Reset and establish the RUN status again. If the same error is			
1004	(1) Malfunctioning due to noise or other reason (2) Hardware fault	displayed again, this suggests a CPU hardware error. Explain the error symptom and get advice from our sales			
1005	(-)	representative.			
1006					
1007					
1007					
1008					
1105	Shared CPU memory fault in the CPU.	Measure noise level. Reset and establish the RUN status again. If the same error is displayed again, this suggests a CPU hardware error. Explain the error symptom and get advice from our sales representative.			
1300	There is an output module with a blown fuse.	Check ERR. LED of the output modules and replace the module whose LED is lit.			
1401	There was no response from the motion module or intelligent function module during initial communications.	The Motion dedicated module, the intelligent function module, the CPU module or the base unit has hardware error. Explain the error symptom and get advice from our sales representative.			
1413					
1414	An error is detected on the Q bus.	A special function module, the CPU module, or the base unit has			
1415	Fault of the CPU or extension base unit was detected.	hardware error. Explain the error symptom and get advice from our sales representative.			
1416	Bus fault was detected at power-on or reset.				
1500	A momentary power interruption of the power supply occurred. The power supply went off.	Check the power supply.			
1600	(1) Voltage of the CPU has dropped below stipulated level. (2) The lead connector of CPU battery has not been installed.	(1) Replace the battery. (2) If the battery is for internal RAM or for the back-up power function, install a lead connector.			
1601	Battery voltage has dropped below stipulated level.	Replace the battery.			
2121	A CPU module is installed in a slot except CPU slot, 0 to 2 slot.	A CPU module is installed to a CPU slot or 0 to 2 slot.			
2124	(1) A module is installed in slot 65 or subsequent slot. (2) A module is installed in a base for which "None" is set in the base settings.	(1) Remove a module of slot 65 or subsequent slot. (2) Remove a module of base for which "None" is set in the base settings.			
2125	A module which the PLC CPU cannot recognize has been installed. There was no response from the intelligent function module.	Install a usable module in the PLC CPU. The intelligent function module has hardware error. Explain the error symptom and get advice from our sales representative.			
2126	CPU module locations in a Multiple CPU system is either of the following. (1) There are non-installation slots between the CPU modules. (2) The modules except the PLC CPU are installed between the PLC CPU modules.	(1) There must be non-installation slots between the CPU modules in the Multiple CPU system. (When the non-installation slots are reserved, cancel the reservation.) (2) Remove the modules except the PLC CPU installed between			

^{○ :} It occurs in the CPU (CPU No.) which detected a error.

 $[\]odot\,$: It occurs in all CPU No. at the time of the Multiple CPU composition.

^{-:} It does not occur.

Table 19.8 Multiple CPU errors which occurs in the Motion CPU (continued)

Middle		Error	Error information	Occur	rs CPU	LED	status	Operating	Diagnostic			
classification	Error messages	code	Classification code	Single composition	Multiple composition	RUN	ERROR	status of CPU	timing			
		3001		0	0							
Parameter	PARAMETER ERROR	3010	File name	-	©	OFF	Flickers	Stop	At power supply ON/ at reset/			
	ERRUR	3012		_	0				at Stop → Run			
		3013		Ι	©							
weight occasion	Other issue	7000	7000	7000	Module No. (Note-1) (Note-3)	_	0				Always	
	opportunity CPU weight occasion error (MULTI CPU DOWN)					OFF	Flickers	Stop	At power			
		7002	Module No. (Note-1)	_	0				supply ON/ at reset			
Multiple		7003		_	0				atteset			
	Multiple CPU start error (MULTI EXE. ERROR)	7010	Module No. (Note-1)	_	0	OFF	Flickers	Stop	At power supply ON/ at reset			
	Multiple CPU start error (MULTI CPU ERROR)	7020	Module No. (Note-1)	-	0	ON	ON	Continue	Always			
CPU error except for PLC CPU	CPU error except for PLC CPU (CONT. UNIT ERROR) (Note-4) (Note-5)	10000	_	Except for	PLC CPU	ON	ON : System setting error/ servo error OFF : other error	Stop : System setting error Continue : other error	At power supply ON/ at reset/ at Stop → Run			

(Note-1): CPU No. is stored in slot No. of the common information classification.

⁽Note-2): Base No. in "common information classification code" of "error information classification code" is 0: CPU base, 1 to 7: Number of extension bases.

⁽Note-3): Because a stop error or CPU No. except CPU No. that it was reset becomes MULTI CPU DOWN simultaneously, a stop error or CPU No. except CPU No. that it was reset may store in the classification of error information depending on timing.

⁽Note-4): When an error occurs in the Motion CPU and so on except PLC CPU, if a PC diagnosis is made in the CPU except PLC CPU from GX Developer via PLC CPU, the error code "10000" is indicated.

⁽Note-5): The Motion SFC error detection signal (M2039) turned on at the error detection. A self-diagnosis error flag (M9008) and a diagnosis error flag (M9010) do not turn on at the error detection. The error code "10000" being set in D9008 is reset in the Motion SFC error detection signal (M2039) ON → OFF.

⁽Note-6): MOTION RUN LED turns off at the stop error occurrence. (The condition of RUN LED does not change.)

	T		
Error code	Error contents and cause	Corrective action	Remark
3001	Parameter contents have been destroyed.	(1) Read the error detailed information at the peripheral device, check and correct the parameter items corresponding to the numerical values (parameter No.). (2) If the error still occurred after correcting of the parameter settings, it may be an error for internal RAM of CPU or memory. Explain the error symptom and get advice from our sales representative.	
3010	The number of CPU modules set in the parameter differ from the real installation in a Multiple CPU system.	Match (preset count of Multiple CPU setting) – (CPU (empty) setting in I/O assignment) with the real installation of CPUs.	
3012	The reference CPU No. set in the parameter differ from the setting in a Multiple CPU system.	Match the setting in the parameter with that of the reference CPU No. (CPU No.1).	
3013	Multiple CPU automatic refresh setting is any of the followings in a Multiple CPU system. (1) When a bit device is used as a refresh device, a number except a multiple of 16 is set as the refresh first device. (2) A non-specifiable device is specified. (3) The number of transmitting points is an odd number.	Check the following in the Multiple CPU automatic refresh parameters and make correction. (1) When specifying the bit device, specify a multiple of 16 for the refresh first device. (2) Specify the device that may be specified for the refresh device. (3) Set the number of transmitting points to an even number.	
7000	In a Multiple CPU system, a CPU fault occurred at the CPU where "all station stop by stop error of CPU was selected" in the operating mode. (It occurs in the CPU except for the CPU that suspension of a system is chosen.) In a Multiple CPU system, CPU No.1 resulted in stop error at poweron and the other CPU cannot start. (This error occurred at CPU No.2 to 4)	Read the individual information of the error at the peripheral device, check the error of the CPU resulting in CPU fault, and remove the error.	
7002 7003	At initial communication in a Multiple CPU system, no response is given back from the target CPU of initial communication.	Reset the PLC CPU and run it again. If the same error is displayed again, it is a hardware fault of any CPU. Explain the error symptom and get advice from our sales representative.	
7010	(1) A fault CPU is installed in a Multiple CPU system. (2) CPUs of unmatched versions are installed in a Multiple CPU system. (This error is detected at the PLC CPU of function version B.) (3) Any CPU No. among CPU No.2 to 4 was reset, after power supply on a Multiple CPU system. (This error occurs at only the CPU No. which reset was released.)	The CPU No. of the function version A or the break down module is exchanged for the CPU module of the function version B, after it began to read the individual information of the error at the peripheral devices.	
7020	In a Multiple CPU system, a CPU fault occurred at the CPU where "all station stop by stop error of CPU was not selected" in the operation mode. (The error is detected at the PLC CPU of other than the CPU No. where the CPU fault occurred.)	Read the individual information of the error at the peripheral device, check the error of the CPU resulting in CPU fault, and remove the error.	
10000	The error which a Motion CPU was characteristic of occurred. It is set when an error all to set with the system setting error, the Motion CPU is detected. (Minor error, major error, servo error and various errors)	Use the software package of the applicable CPU module to check the details of the error that occurred.	

 $[\]bigcirc\,$: It occurs in the CPU (CPU No.) which detected a error.

 $[\]odot\,$: It occurs in all CPU No. at the time of the Multiple CPU composition.

^{-:} It does not occur.

19.4.2 Release of self-diagnosis error

The CPU can perform the release operation for errors only when the errors allow the CPU to continue its operation.

To release the errors, follow the steps shown below.

- (1) Eliminate the error cause.
- (2) Store the error code to be released in the special register D9060.
- (3) Turn the special relay M9060 off to on.
- (4) The target error is released.

After the CPU is reset by the release of error, the special relays, special registers and LEDs for the error are returned to the states under which the error occurred.

If the same error occurs again after the release of the error, it will be registered again.

APPENDICES

APPENDIX 1 Processing Times

APPENDIX 1.1 Processing time of operation control/Transition instruction

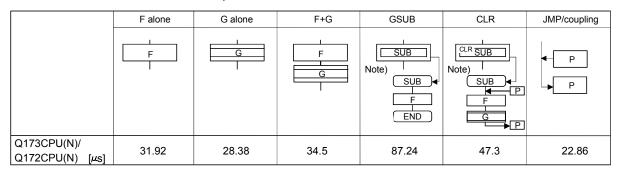
(1) Operation instructions Processing time of operation instruction

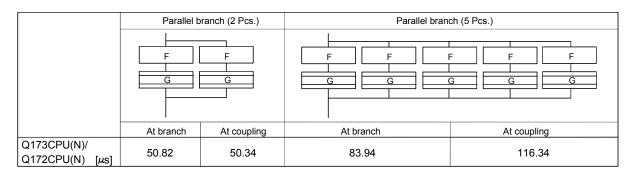
Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
			#0=#1	6.30
			D800=D801	10.20
	=	Subatitution	#0L=#2L	8.70
	-	Substitution	D800L=D802L	13.56
			#0F=#4F	8.88
			D800F=D804F	15.30
			#0=#1+#2	9.72
			D800=D801+D802	13.50
		A statistics	#0L=#2L+#4L	11.52
	+	Addition	D800L=D802L+D804L	16.68
			#0F=#4F+#8F	13.26
			D800F=D804F+D808F	19.20
			#0=#1-#2	10.02
	-	Subtraction	D800=D801-D802	13.14
			#0L=#2L-#4L	10.68
			D800L=D802L-D804L	22.50
Binary			#0F=#4F-#8F	12.06
operation			D800F=D804F-D808F	19.26
	*	Multiplication	#0=#1*#2	8.76
			D800=D801*D802	12.66
			#0L=#2L*#4L	8.46
			D800L=D802L*D804L	18.12
			#0F=#4F*#8F	12.30
			D800F=D804F*D808F	19.14
			#0=#1/#2	10.08
			D800=D801/D802	13.02
	,	District	#0L=#2L/#4L	13.62
	1	Division	D800L=D802L/D804L	20.52
			#0F=#4F/#8F	14.16
			D800F=D804F/D808F	20.04
			#0=#1%#2	10.74
	0/	Damaindan	D800=D801%D802	15.06
	%	Remainder	#0L=#2L%#4L	13.20
			D800L=D802L%D804L	20.76
			#0=~#1	7.68
D.1		Bit inversion	D800=~D801	11.22
Bit operation	~	(complement)	#0L=~#2L	9.60
		, p	D800L=~D802L	14.64

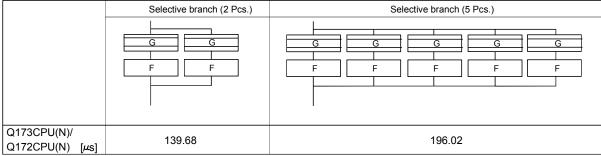
Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]			
			#0=#1	3.78			
	&	Pit logical AND	D800=D801&D802	12.78			
	α	Bit logical AND	#0L=#2LL	10.80			
			D800L=D802L&D804L	18.24			
			#0=#1 #2	8.40			
		Dit to six of OD	D800=D801 D802	12.36			
	ı	Bit logical OR	#0L=#2L #4L	10.68			
			D800L=D802L D804L	12.54			
			#0=#1^#2	8.76			
Bit operation	۸	D:: 1 : 0D	D800=D801^D802	10.80			
bit operation	Λ	Bit exclusive OR	#0L=#2L^#4L	10.62			
			D800L=D802L^D804L	15.60			
			#0=#1>>#2	11.76			
		D:: : 1 . 1:0	D800=D801>>D802	15.00			
	>>	Bit right shift	#0L=#2L>>#4L	11.82			
			D800L=D802L>>D804L	18.06			
			#0=#1<<#2	10.50			
		Bit left shift	D800=D801< <d802< td=""><td>12.24</td></d802<>	12.24			
	<<		#0L=#2L<<#4L	12.18			
			D800L=D802L< <d804l< td=""><td>15.90</td></d804l<>	15.90			
	1	Sign inversion (complement of 2)	#0=-#1	7.02			
			D800=-D812	11.70			
0:			#0L=-#2L	8.76			
Sign			D800L=-D802L	14.34			
			#0F=-#4F	11.28			
			D800F=-D804F	15.84			
	SIN	Cina	#0F=SIN(#4F)	19.80			
		Sine	D800F=SIN(D804F)	25.68			
	cos	Coolin	#0F=COS(#4F)	13.20			
		Cosin	D800F=COS(D804F)	24.54			
		Tanant	#0F=TAN(#4F)	19.86			
	TAN	Tangent	D800F=TAN(D804F)	30.78			
	A CINI	Amasia	#0F=ASIN(#4F)	21.18			
	ASIN	Arcsin	D800F=ASIN(D804F)	33.48			
	4000	Amazain	#0F=ACOS(#4F)	23.52			
	ACOS	Arccosin	D800F=ACOS(D804F)	34.80			
Standard	A T A N I	Anatananant	#0F=ATAN(#4F)	15.30			
function	ATAN	Arctangent	D800F=ATAN(D804F)	19.62			
	CODT	Course rest	#0F=SQRT(#4F)	10.68			
	SQRT	Square root	D800F=SQRT(D804F)	15.42			
	I NI	Notural logarithm	#0F=LN(#4F)	16.92			
	LN	Natural logarithm	D800F=LN(D804F)	22.26			
	רעה	Evaponetial aparation	#0F=EXP(#4F)	18.54			
	EXP	Exponential operation	D800F=EXP(D804F)	25.14			
	400	Abaduda	#0F=ABS(#4F)	12.90			
	ABS	Absolute value	D800F=ABS(D804F)	16.02			
	DND	Dayred off	#0F=RND(#4F)	12.24			
		RND	RND	RND	Round-off	D800F=RND(D804F)	12.42

Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
	FIV		#0F=FIX(#4F)	11.40
	FIX	Round-down	D800F=FIX(D804F)	20.28
	EUD	Round-up	#0F=FUP(#4F)	12.00
	FUP		D800F=FUP(D804F)	16.92
			#0=BIN(#1)	8.82
Standard			D800F=BIN(D801)	12.30
function	BIN	BCD→BIN conversion	#0L=BIN(#2L)	11.16
			D800L=BIN(D802L)	14.82
			#0=BCD(#1)	13.92
			D800=BCD(D801)	17.70
	BCD	BIN→BCD conversion	#0L=BCD(#2L)	14.94
			D800L=BCD(D802L)	26.10
			#0=SHORT(#2L)	10.14
		Converted into 16-bit integer type	#0=SHORT(#4F)	14.70
	SHORT	(signed)	D800=SHORT(D802L)	14.40
		(cig.i.eu)	D800=SHORT(D804F)	17.40
			#0=USHORT(#2L)	9.90
		Converted into 16-bit integer type	#0=USHORT(#4F)	14.52
	USHORT	(unsigned)	D800=USHORT(D802L)	14.10
		(* * 5 * * *)	D800=USHORT(D804F)	16.50
	LONG	Converted into 32-bit integer type	#0L=LONG(#2)	9.00
			#0L=LONG(#4F)	12.48
		(signed)	D800L=LONG(D802)	12.90
Туре		,	D800L=LONG(D804F)	18.60
conversion	ULONG	Converted into 32-bit integer type (unsigned)	#0L=ULONG(#2)	9.30
			#0L=ULONG(#4F)	47.22
			D800L=ULONG(D802)	7.62
			D800L=ULONG(D804F)	50.10
			#0F=FLOAT(#4)	9.12
		Regarded as signed data and	#0F=FLOAT(#4L)	9.48
	FLOAT	converted into 64-bit floating point	D800F=FLOAT(D804)	13.56
		type	D800F=FLOAT(D804L)	15.00
		UFLOAT	#0F=UFLOAT(#4)	7.92
		Regarded as unsigned	#0F=UFLOAT(#4L)	10.26
	UFLOAT	data and converted	D800F=UFLOAT(D804)	13.26
		into 64-bit floating point type	D800F=UFLOAT(D804L)	15.06
			SET M1000 = M0	13.74
	(None)	ON (normally open contact)	SET M1000 = X100	14.26
D			SET M1000 = PX0	14.82
Bit device status			SET M1000 = !M0	13.38
	!	OFF (normally closed contact)	SET M1000 = !X100	14.40
			SET M1000 = !PX0	14.82
			SET M1000	3.42
	SET	Device set	SET Y100	10.74
Bit device			SET PY0	14.58
control			RST M1000	3.30
	RST	Device reset	RST Y100	10.02
			RST PY0	11.16

Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
			DOUT M0,#0	9.42
			DOUT M0,#0L	10.14
	DOLLT		DOUT Y100,#0	9.48
	DOUT	Device output	DOUT Y100,#0L	12.30
			DOUT PY0,#0	8.76
			DOUT PY0,#0L	15.48
			DIN #0,M0	8.88
Bit device			DIN #0L,M0	10.20
control			DIN #0,X0	9.12
	DIN	Device input	DIN #0L,X0	9.66
			DIN #0,PX0	10.56
			DIN #0L,PX0	11.10
-			OUT M1000 = M0	19.26
	OUT	Bit device output	OUT Y0 = M0	21.90
	001	Dit devide output	OUT PY0 = M0	20.88
			SET M1000 = M0*M1	15.96
	*	Logical AND	SET M1000 = X100*X101	14.70
Logical		Logical 7 li 12	SET M1000 = PX0*PX1	17.40
operation	+		SET M1000 = M0+M1	15.66
-		Logical OR	SET M1000 = X100+X101	14.94
			SET M1000 = PX0+PX1	16.20
	==		SET M1000 = #0==#1	11.40
		Equal to	SET M1000 = D800==D801	14.10
			SET M1000 = #0L==#2L	13.98
			SET M1000 = D800L==D802L	18.42
			SET M1000 = #0F==#4F	14.64
			SET M1000 = D800F==D804F	18.48
-			SET M1000 = #0!=#1	12.72
			SET M1000 = D800!=D801	15.24
		Niet a swellte	SET M1000 = #0L!=#2L	13.98
	!=	Not equal to	SET M1000 = D800L!=D802L	18.54
			SET M1000 = #0F!=#4F	16.02
Comparison			SET M1000 = D800F!=D804F	18.66
operation			SET M1000 = #0<#1	10.56
			SET M1000 = D800 <d801< td=""><td>16.14</td></d801<>	16.14
	<	Logo than	SET M1000 = #0L<#2L	16.26
		Less than	SET M1000 = D800L <d802l< td=""><td>18.78</td></d802l<>	18.78
			SET M1000 = #0F<#4F	16.32
			SET M1000 = D800F <d804f< td=""><td>16.32</td></d804f<>	16.32
			SET M1000 = #0<=#1	12.60
			SET M1000 = D800<=D801	16.14
	<=	Less than or equal to	SET M1000 = #0L<=#2L	14.04
	~=	Loss than or equal to	SET M1000 = D800L<=D802L	18.42
			SET M1000 = #0F<=#4F	16.50
			SET M1000 = D800F<=D804F	19.32


Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
			SET M1000 = #0>#1	12.18
			SET M1000 = D800>D801	15.72
			SET M1000 = #0L>#2L	14.64
	>	More than	SET M1000 = D800L>D802L	19.74
			SET M1000 = #0F>#4F	15.30
Comparison			SET M1000 = D800F>D804F	19.86
operation			SET M1000 = #0>=#1	12.12
			SET M1000 = D800>=D801	15.84
			SET M1000 = #0L>=#2L	14.16
	>=	More than or equal to	SET M1000 = D800L>=D802L	19.38
			SET M1000 = #0F>=#4F	16.44
			SET M1000 = D800F>=D804F	21.84
			CHGV(K1,#0)	13.80
	011017		CHGV(K1,D800)	15.72
	CHGV	Speed change request	CHGV(K1,#0L)	14.70
Motion			CHGV(K1,D800L)	18.36
dedicated			CHGT(K1,#0)	6.84
function	CHGT	Torque limit value change	CHGT(K1,D800)	8.70
		request	CHGT(K1,#0L)	3.60
			CHGT(K1,D800L)	11.40
	El	Event task enable	El	3.78
	DI	Event task disable	DI	3.66
	NOP	No operation	NOP	1.44
			BMOV #0,#100,K10	4.80
			BMOV D800,D100,K10	11.94
	DMOV	Dia di transfer	BMOV #0,#100,K100	34.80
	BMOV	Block transfer	BMOV D800,D100,K100	37.98
			BMOV N1,#0,K512	67.86
			BMOV N1,D800,K512	73.14
			FMOV #0,#100,K10	13.98
Others	FMOV	Same data block transfer	FMOV D800,D100,K10	21.18
	1 IVIOV	Same data block transler	FMOV #0,#100,K100	25.50
			FMOV D800,D100,K100	43.80
			MULTW H800,#0,K1,M0	21.72
			MULTW H800,D800,K1,M0	22.14
			MULTW H800,#0,K10,M0	22.86
	MULTW	Write device data to shared CPU	MULTW H800,D800,K10,M0	28.92
	IVIOLIVV	memory of the self CPU	MULTW H800,D800,#0,K100,M0	42.36
			MULTW H800,D800,K100,M0	44.70
			MULTW H800,#0,K256,M0	81.06
			MULTW H800,D800,K256,M0	85.38


		1	ı	1
Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
			MULTR #0,H3E0,H800,K1	44.16
			MULTR D800,H3E0,H800,K1	44.76
			MULTR H800,#0,K10,M0	51.48
	MULTR	Read device data from shared	MULTR #0,H3E0,H800,K10	51.00
	WOLTK	CPU memory of the other CPU	MULTR D800,H3E0,H800,K10	134.88
			MULTR #0,H3E0,H800,K100	135.60
			MULTR #0,H3E0,H800,K256	269.94
			MULTR D800,H3E0,H800,K256	270.96
			TO H0,H0,#0,K1	27.78
		Write device data to intelligent function module/special function module	TO H0,H0,D800,K1	27.30
	то		TO H0,H0,#0,K10	34.50
			TO H0,H0,D800,K10	34.80
			TO H0,H0,#0,K100	105.78
Others			TO H0,H0,D800,K100	120.90
			TO H0,H0,#0,K256	227.52
			TO H0,H0,D800,K256	249.24
			FROM #0,H0,H0,K1	31.20
			FROM D800,H0,H0,K1	28.14
			FROM #0,H0,H0,K10	36.30
	FROM	Read device data from intelligent	FROM D800,H0,H0,K10	37.44
	FRON	Read device data from intelligent	FROM #0,H0,H0,K100	119.70
			FROM D800,H0,H0,K100	116.82
			FROM #0,H0,H0,K256	247.98
			FROM D800,H0,H0,K256	246.90
			TIME K1	13.26
	TIME	Time to wait	TIME #0	19.50
			TIME D800	16.62


(2) Transition conditional expressions Processing time of transition conditional expressions

Classifications	Symbol	Instruction	Operation expression	Q173CPU(N)/Q172CPU(N) Unit [µs]
		ON (Name ally a main a anta at)	MO	2.82
	(None)	ON (Normally open contact) (When condition enables)	X100	6.88
Bit device		(When condition enables)	PX0	7.62
control		OFF (Name ally alone discrete)	!M0	3.24
	!	OFF (Normally closed contact) (When condition enables)	!X100	8.46
		(When condition enables)	!PX0	9.24
			M0*M1	10.32
	*	Logical AND	X100*X101	11.28
Logical			PX0*PX1	12.36
operation			M0+M1	5.28
	+	Logical OR	X100+X101	9.78
			PX0+PX1	11.10
			#0==#1	1.26
			D800==D801	9.48
		Favelte	#0L==#2L	7.74
	==	Equal to	D800L==D802L	13.32
			#0F==#4F	9.36
			D800F==D804F	12.66
	!=	Not equal to	#0!=#1	1.38
			D800!=D801	9.42
			#0L!=#2L	8.16
			D800L!=D802L	12.06
			#0F!=#4F	9.60
			D800F!=D804F	12.24
	<	Less than	#0<#1	1.68
			D800 <d801< td=""><td>9.90</td></d801<>	9.90
			#0L<#2L	7.50
			D800L <d802l< td=""><td>12.48</td></d802l<>	12.48
			#0F<#4F	9.30
Comparison			D800F <d804f< td=""><td>13.80</td></d804f<>	13.80
operation			#0<=#1	2.76
			D800<=D801	9.48
		1 41 14	#0L<=#2L	2.82
	<=	Less than or equal to	D800L<=D802L	13.02
			#0F<=#4F	4.26
			D800<=D804F	11.40
			#0>#1	6.48
			D800>D801	4.80
			#0L>#2L	7.98
	>	More than	D800L>D802L	7.38
			#0F>#4F	9.12
			D800F>D804F	11.40
ļ			#0>=#1	1.26
			D800>=D801	9.36
			#0L>=#2L	2.70
	>=	More than or equal to	D800L>=D802L	12.06
			#0F>=#4F	4.32
			D800F>=D804F	13.08

(3) Processing time by the combination F and G (program described in F/G is NOP)

(Note): Varies greatly with the started or cleared program.

POINT

Long processing time may cause a Motion CPU WDT error or servo fault. Especially for the Motion SFC programs run by event/NMI tasks, take care so that the processing time will not be too long.

APPENDIX 2 Sample Program

APPENDIX 2.1 Program example to execute the Multiple CPU dedicated instruction continuously

This is the program example which publishes the instruction continuously toward the same Motion CPU in the Multiple dedicated instruction toward the Motion CPU. When an instruction cannot be accepted even if it is executed, it becomes "No operation". The following is program example which repeats reading data for 10 points from D0 of the Motion CPU installing the CPU No.2 to since D100 of the PLC CPU, and the data for 10 points from D200 of the Motion CPU to since D300 of the PLC CPU by turns continuously during X0 is ON. Make a circuit to execute the next S(P).DDRD instruction after the device which it is made to turn on by the instruction completion of the S(P).DDRD instruction execute 1-scan turns it on.

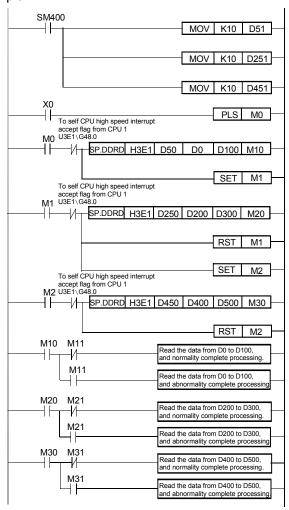
<Example> SM400 MOV K10 D51 MOV K10 D251 X0 PLS M2 M2 X0 ┨┠ SET M0 M1 M0 SP.DDRD H3E1 D50 D0 D100 M10 SET M50 M50 M10 RST M0 SET M1 RST M50 SP.DDRD H3E1 D250 D200 D300 M20 SET M51 M51 M20 **RST** M1 RST M51 M10 M11 Read the data from D0 to D100. ┪┝ ╢ and normality complete processin M11 Read the data from D0 to D100, -| F and abnormality complete process M21 M20 Read the data from D200 to D300, and normality complete processing ╢ M21 Read the data from D200 to D300, and abnormality complete processir

There is the following restriction in the case as an example.

1) The Multiple CPU instruction of Motion CPU cannot be used Interrupt program/fixed cycle executive type program and low speed executive type program. When it is used, an instruction may not operate by the timing.

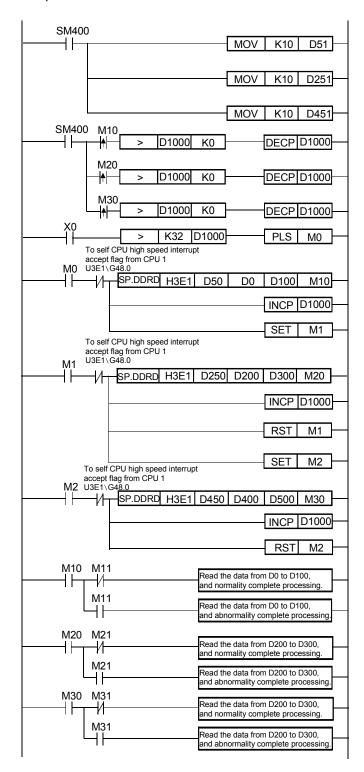
APPENDIX 2.2 The program example to execute plural Multiple CPU instruction by the instructions of one time

This is the program example which executes to the Multiple same Motion CPU at high speed by one instruction.


In this case, you must take an interlock with "To self CPU high speed interrupt accept flag from CPU". When an instruction cannot be accepted even if it is executed, it becomes "No operation".

The program which read the data for 10 points from D0 of the Motion CPU installing the CPU No.2 to since D100 of the PLC CPU, the data for 10 points from D200 of the Motion CPU to since D300 of the PLC CPU, and the data for 10 points from D400 of the Motion CPU to since D500 of the PLC CPU by starting of X0 is shown as an example 1.

At this time, number of multiple CPU dedicated execute instructions at one command should no exceed the maximum acceptable number of instructions (Refer to Chapter 5.) of one Motion CPU.


When an maximum acceptable number of instructions is 32, the program which made not to execute the multiple dedicated instructions when number of the Multiple CPU dedicated execute instructions exceeds 32 is shown as an example 2.

<Example 1>

APP - 11

<Example 2>

There is the following restriction in the case as the example 2.

 The Multiple CPU dedicated instruction of Motion CPU cannot be used Interrupt program/fixed cycle executive type program and low speed executive type program. When it is used, an instruction may not work by the timing.

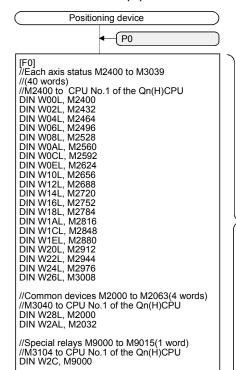
APPENDIX 2.3 Motion control example by Motion SFC program

(1) The Motion SFC program composition example to execute motion control.

This sample program example is described to every following function.

Function list of sample program

No.	Item	Description
1	Monitor of the positioning	The positioning dedicated device status of the Motion CPU (CPU No.2)
ı	dedicated device	is reflected on "M2400 to" and "D0 to" of the PLC CPU (CPU No.1).
2	Reading of the clock data	The clock data read request (M9028) is turned on so that clock data
	Reading of the clock data	may be set to the error history.
		When the forced stop input assigned to PX0 is on, all axes turn on, and
3	Forced stop	motion control is executed.
٦	l orded stop	When the forced stop input turn off, servo amplifier is made to forced
		stop, and motion control is suspended, and actual output (PY) turn off.
		Motion control is executed according to the condition of PX and PX2 in
		each following mode.
4	Motion control	• PX2 : OFF PX1 : OFF JOG mode
4		PX2 : OFF PX1 : ON Manual pulse generator mode
		PX2 : On PX1 : OFF Home position return mode
		PX2 : On PX1 : On Programming operation mode
		The following JOG operation is executed when each signal of PX3 to
		PX6 is turned on.
5	JOG mode	PX3 : 1 axis JOG forward rotation
5	JOG Mode	PX4 : 1 axis JOG reverse rotation
		PX5 : 2 axes JOG forward rotation
		PX6 : 2 axes JOG reverse rotation
		The following the manual pulse generator operation is executed.
		Manual pulse generator operation of 1 axis is executed with the
6	Manual pulse generator mode	manual pulse generator P1.
		Manual pulse generator operation of 2 axes is executed with the
		manual pulse generator P1.
		The following home position return is executed.
7	Home position return mode	When PX3 is on, the home position return of 1 axis is executed.
		When PX4 is on, the home position return of 2 axes is executed.
		The following program operation is executed.
		When PX3 detects OFF to ON, axis No.1 locates and 1000[ms]
		standing by, after the location of axis No.2 is executed.
8	Programming operation mode	• When PX4 turn on, axis No.1, 2 locates of the linear control and in-
ľ	n rogramming operation mode	position check is executed, after the location of axis No.2 is
		executed, the program stands by until No.1, 2 locates of the linear
		control is executed at a double speed in the opposition direction and
		PX4 turns off.


(2) Contents processing of the Motion SFC program Motion SFC program list

No.	Program name	Task	Automatic operation	Number of connective transitions	Contents of processing		
0	Positioning device	Normal	Start	3	 This program starts automatically at the time of run of Q173CPU(N), and it is always executed. The positioning dedicated device (bit device) for monitor is transferred to "W0 to". The positioning dedicated device (word device) for monitor is transferred to "W100 to". (Note): "W0 to" is assigned to "M2400 to" of the PLC CPU (CPU No.1), and "W100 to" is assigned to "D0 to" by the automatic refresh setting. 		
20	Main	Normal	Start	3	 This program starts automatically at the time of run of Q173CPU(N), and it is always executed. Watch data is taken out, and clock data read request (M9028) is turned on. When a forced stop is canceled, a subroutine starts a "No.110: Motion control". "No.110: Motion control" is stopped at the time of the forced stop, and real output (PY) is turned off. 		
110	Motion control	Normal	Not start	3	 All axes servo on. The call of the subroutine of the following program is executed by the condition of PX1, PX2. 1) PX2: OFF PX1: OFF No.120: JOG 2) PX2: OFF PX1: ON No.130: Manual pulse generator 3) PX2: ON PX1: OFF No.140: Home position return 4) PX2: ON PX1: ON No.150: Programming operation 		
120	JOG	Normal	Not start	3	 (1) The JOG operation speed of 1 axis and 2 axes is set. (2) 1 axis JOG forward command is turned on when PX3 is on, and the reverse command is turned on when PX4 is on. (3) 2 axes JOG forward command is turned on when PX5 is on, and the reverse command is turned on when PX6 is on. (4) The above (2), (3) are repeated during PX2/PX1 is off, when except for it, the JOG forward and reverse command of 1 axis and 2 axes are turned off and the program is ended. 		
130	Manual pulse generator	Normal	Not start	3	 1 pulse input magnification of the 1 axis and 2 axes is set up. 1 axis is controlled with P1, and set up to control 2 axes with P2, and Manual pulse generator enable flag of P1, P2 is turned on. When except for PX2 : OFF, PX1 : ON (Manual pulse generator mode), Manual pulse generator enable flag of P1, P2 is turned off, and a program is ended. 		

Motion SFC program list (Continued)

No.	Program name	Task	Automatic operation	Number of connective transitions	Contents of processing
140	Home position return	Normal	Not start	3	 "K140: The home position return of 1 axis" is started when PX3 is on, "K141: The home position return of 2 axes" is started when PX4 is on. PX2: ON, PX1: The program is ended when they become to except for off (Home position return mode).
150	Programming operation	Normal	Not start	3	 When PX3 detects OFF to ON, after positioning of 1 axis, standing by for 1000[ms] and positioning of 2 axes is executed. When PX4 turn on, after positioning of linear interpolation inposition check is executed, positioning of axis No. 1, 2 linear interpolation is executed at a double speed in the opposition direction, and it stand by until PX4 turned off. PX2: ON, PX1: The program is fended when they become to except for ON (Programming operation mode).

(a) No.0 : Positioning device

- (1) Each axis status M2400 to M3039 (for 32 axes) transferred to "W0 to"
- (2) Common devices M2000 to M2064 transferred to "W28 to".
- (3) Special relay M9000 to M9015 transferred to "W2C to".

Automatic refresh of the between Multiple CPU, and "W0 to" of Q173CPU(N) (CPU No.2) sets it up to have refresh by "M2400 to" of Qn(H)CPU (CPU No.1), therefore the condition of Q173CPU(N) (CPU No.2) can be grasped with Qn(H)CPU of the CPU No.1 by monitoring the following device.

	Correspond with devices
(CPU No.1)	of Q173CPU(N) (CPU No.2)
M2400 to M3039	M2400 to M3039
M3040 to M3103	M2000 to M2064
M3104 to M3119	M9000 to M9015

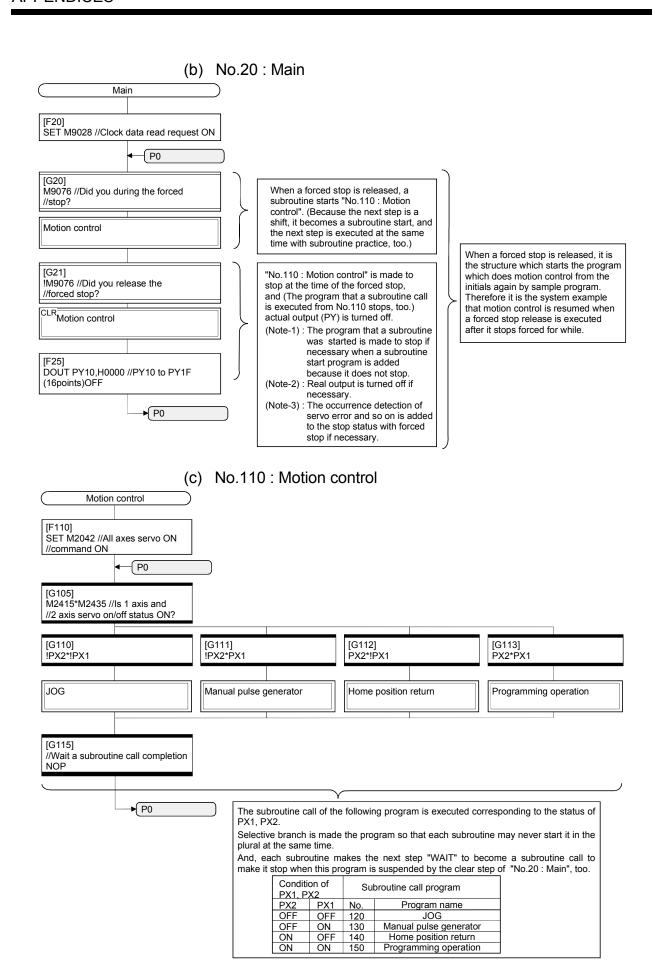
Refresh does data for 32 axes by this sample example, number of refresh points is made a necessary minimum corresponding to the system for processing time

[F1] //Each axis monitor devices //D0000 to D0639(640 words) //D000 to CPU No.1 of the Qn(H)CPU BMOV W100, D0, K640

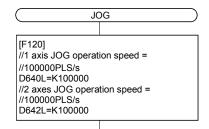
//Special relays M9064 to M9079(1 word) //M3110 to CPU No.1 of the Qn(H)CPU

- //Special devices D9000 to D9015(16 words) //D640 to CPU No.1 of the Qn(H)CPU
- W380=D9000 W381=D9005

DIN W2D. M9064


- W382=D9008
- W384I =D9010I
- W386L=D9012L
- W388L=D9014L
- //Special registers D9182 to D9197
- //(16 words) //D656 to CPU No.1 of the Qn(H)CPU
- W38AL=D9182L W38CL=D9184L
- W38EL=D9186L
- W390L=D9188L
- W392L=D9190L
- W394L=D9192L
- W396L=D9194L W398L=D9196L
- **▶** P0

- (1) Each monitor devices D0 to D639 (for 32 axes) transferred to "W100 to".
- (2) Special register D9000 to D9015 transferred to "W380 to".
- (3) Special register D9182 to M9197 transferred to "W38A to".


Automatic refresh of the between Multiple CPU, and "W100 to" of Q173CPU(N) (CPU No.2) sets it up to have refresh by "D0 to" of Qn(H)CPU (CPU No.1), therefore the condition of Q173CPU(N) (CPU No.2) can be grasped with Qn(H) CPU of the CPU No.1 by monitoring the following device.

Devices of QnHCPU	Correspond with devices
(CPU No.1)	of Q173CPU(N) (CPU No.2)
D0000 to D0639	D0000 to D0630
D0640 to D0655	D9000 to D9015
D0656 to D0671	D9182 to D9197

(Note): Refresh does data for 32 axes by this sample example, number of refresh points is made a necessary minimum corresponding to the system for processing time shortening.

(d) No.120 : JOG

[G120]

//1 axis forward rotation JOG start //SET/RST

SET M3202=PX3 * !M3203

RST M3202=IPX3

//1 axis reverse rotation JOG start

//SET/RST

SET M3203=PX4 * !M3202

RST M3203=!PX4 //2 axis forward rotation JOG start

//SET/RST SET M3222=PX5 * !M3223

RST M3222=!PX5

//2 axes reverse rotation JOG start //SET/RST

SET M3223=PX6 * !M3222

RST M3223=!PX6

//Is repeated to the JOG mode //completion.

!(!PX1*!PX2)

When each signal of PX3 to PX6 is turned on/off, which the correspondences JOG command device is SET/RST. It makes forward rotation JOG start of the same axis and a reverse rotation JOG start from making turned on at the same

Signal name	Correspond with JOG command device
PX3	M3202(1 axis forward rotation JOG)
PX4	M3203(1 axis reverse rotation JOG)
PX5	M3222(2 axis forward rotation JOG)
PX6	M3223(2 axis reverse rotation JOG)

(Note): The ON/OFF distinction of each signal can be described with Y/N transition. But, processing time can be shortened more the number of steps when it was described as the following in the case of the processing which could be described only with SET=/RST= because it is made low.

[F122] //1, 2 axis forward/reverse rotation //JOG start command is reset. RST M3202 RST M3203 RST M3222 **RST M3223**

Forward rotation/reverse rotation JOG status of 1, 2 axis is turned off at the time of the JOG mode completion not to continue a JOG movement after it moves to other mode of the safety.

(e) No.130: Manual pulse generator

Manual pulse generator

END

D720=100 //1-pulse input magnification //setting of 1 axis

D721=100 //1-pulse input magnification //setting of 2 axes

D714L=H00000001 //P1 is controlled

D716L=H00000002 //P2 is controlled //2 axes

SET M2051 //P1 Manual pulse generator //enable flag is ON

SET M2052 //P2 Manual pulse generator //enable flag is ON

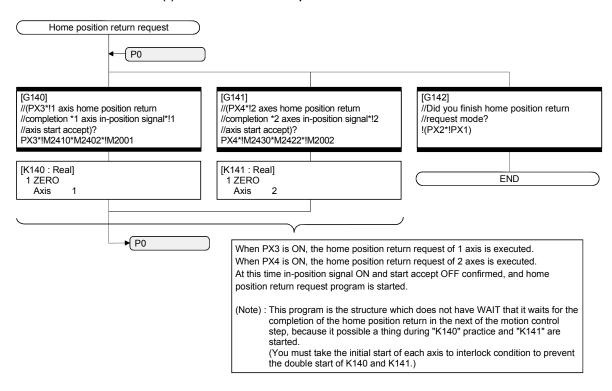
The setup of the following is executed to do manual pulse generator operation of P1 with 1 axis/P2 with 2 axis.

- Setting of 1-pulse input magnification of the 1 axis and 2 axis.
- · Manual pulse generator axis No. setting register is setup to control of P1 with 1 axis/P2 with 2 axis.
- Manual pulse generator axis enable flag of P1, P2 is turned on

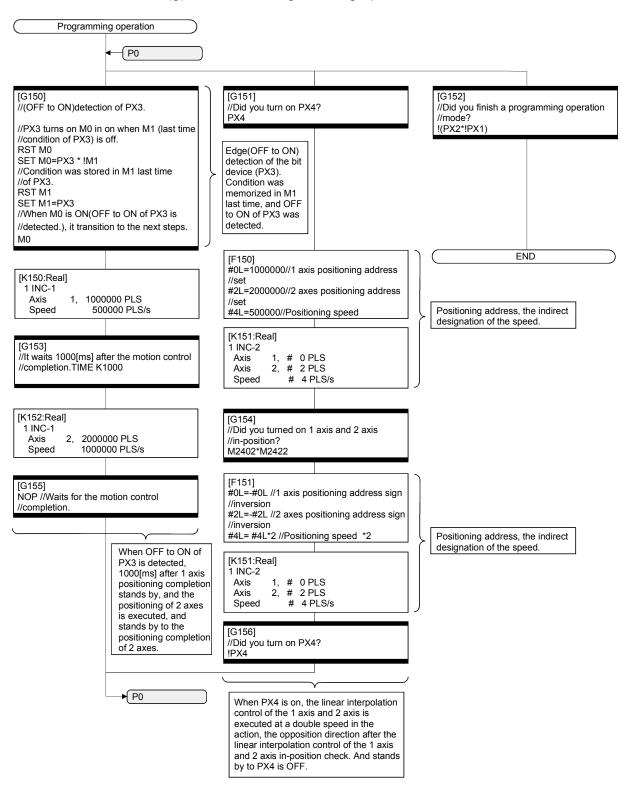
[G130]

!(!PX2*PX1)//Did you complete a manual //pulse generator mode?

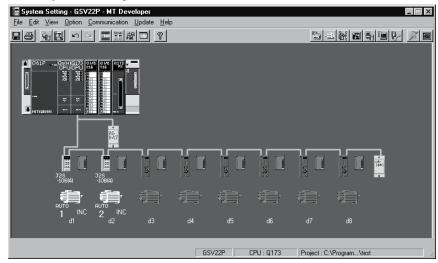
RST M2051 //P1 Manual pulse generator


//enable flag is OFF RST M2052 //P2 Manual pulse generator

//enable flag is OFF


END

1, 2 axis Manual pulse generator enable flag turned off at the time of the JOG mode completion not to continue a manual pulse generator operation after it moves to other mode of the safety.


(f) No.140: Home position return

(g) No.150: Programming operation

(3) System setting data of the Motion CPU System setting is shown below.

(a) Module setting

Manual pulse generator interface module (Q173PX : Slot 3)

Axis No.	Description
P1	Manual pulse generator, Synchronous encoder (INC)
P2	Manual pulse generator, Synchronous encoder (INC)
P3	Manual pulse generator, Synchronous encoder (INC)
I/O response time	0.4[ms]

(b) Basic setting

1) Multiple CPU setting

Setting items	Description
Number of Multiple CPU	2 modules
Operating mode	All CPU stop by stop error of CPU No.1/2

2) Automatic refresh setting 1

	Send ra	nge for ea	ach CPU	CPU side device	
CPU	CPU s	hare mer	nory G	Dev. starting	$\left(\begin{array}{c} w_0 \end{array}\right)$
	Point	Start	End	Start	End
No.1	0	_	_	_	_
No.2	50	0800	0831	W0	W31
No.3					
No.4					

This device area is set up in "M2400" with the Qn(H) CPU No.1. (The bit device for monitor is transferred to "W0 to" by the Motion SFC program on the Q173CPU(N) side.).

3) Automatic refresh setting 2

	Send ra	nge for ea	ach CPU	CPU side device		
CPU	CPU s	hare mer	mory G	Dev. starting	(W100)	
	Point	Start	End	Start	End	
No.1	0	1	_		_	
No.2	640	0832	0AB1	W100	W37F	
No.3						
No.4						

This device area is set up in "D0" with the Qn (H) CPU No.1. (The ward device for monitor is transferred to "W100" to by the Motion SFC program on the Q173CPU(N) side.).

4) Automatic refresh setting 3

	Send ra	nge for ea	ach CPU	CPU side device	
CPU	CPU s	hare mer	mory G	Dev. starting	
	Point	Start	End	Start	End
No.1					
No.2					
No.3					
No.4					

5) Automatic refresh setting 4

	Send ra	nge for ea	ach CPU	CPU side device	
CPU	CPU s	hare mer	nory G	Dev. starting	
	Point	Start	End	Start	End
No.1					
No.2					
No.3					
No.4					

This setting area is used for the use except for the positioning device for the monitor.

6) System setting

Setting items	Description		
Operation cycle setting	Auto		
Operation mode	M2000 is turned on with switch (Stop to Run)		
Emergency shout down input	PX0		

7) Latch range setting

Item	Curahal	Latc	h (1)	Latch (2)		
item	Symbol	Start	End	Start	End	
Internal relay	М					
Link relay	В					
Annunciator	F					
Data register	D					
Link register	W					

Latch (1): It is possible to clear using the latch clear.

Latch (2): Clearing using the latch clear is disabled.

(c) PLC module setting

Type of the module	Number of points	Occupation device	Base	Slot No.	I/O response time
Input	16	000-00F	CPU base unit	1	10[ms]
Output	16	010-01F	CPU base unit	2	

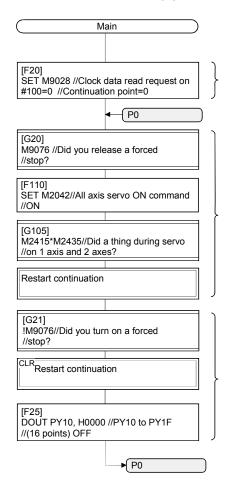
(4) Parameter setting of the Qn(H) CPU No.1

	PC para	ameter item	Qn(H) parameter						
	. o pare		Description						
1	Number o	of CPU			2 modu	les			
2	Operation	n mode		The error op	erating mod	de in the CPU sto	p.		
		CPU No.1	All station stop by stop error						
		CPU No.2	All station stop by stop error						
3	Out of gro	oup input settings	Т	he input con	dition outsid	e the group is tal	ken.		
	Out of group output settings		The output condition outside the group is not taken.						
4	Refresh s	etting							
	Setting No.1		Send range for each CPU			CPU side device			
			Shared CPU memory G			First device	M2400		
	CPU		Point	Start	End	Start	END		
		CPU No.1	0	_	_	_	_		
		CPU No.2	50	0800	0831	M2400	M3199		
	Setting No.2		Send range for each CPU			CPU side device			
			Shared CPU memory G			First device	D0		
	CPU		Point	Start	End	Start	END		
		CPU No.1	0				_		
		CPU No.2	640	0832	0AB1	D0	D639		

APPENDIX 2.4 Continuation execution example at the subroutine re-start by the Motion SFC program

(1) Explanation of the operation

This is the program example which execute continuously from the motion control step which stopped on the way when it re-started after stopping the subroutine program with the clear step during the motion control is running.


The servo is turned on by the forced stop release and the positioning control of the 2 axes liner interpolation is executed when PX4 is ON in this program. One cycle operation is completed after confirmation that PX4 became OFF. When the forced stop is executed during the positioning operating, the positioning operation is interrupted and the servomotor is stopped. It is resumed from the interrupted positioning operation when the forced stop was released next. Continuation execution of the subroutine re-start is executed by this program example by the following processing.

- (a) While motion control with the subroutine is executed, it is memorized whether the positioning of which motion control step was completed in the user device.
- (b) The subroutine re-start is resumed from the motion control step of stopping the information memorized by the above (a).
- (c) A motion control step should locate absolute to cope with it when it is resumed after it stops on the way of the positioning.
- (d) A positioning complete signal (M2401+20n) is used for the decision, whether servomotor is stopped during the positioning.

(2) Contents of processing the Motion SFC program Motion SFC program list

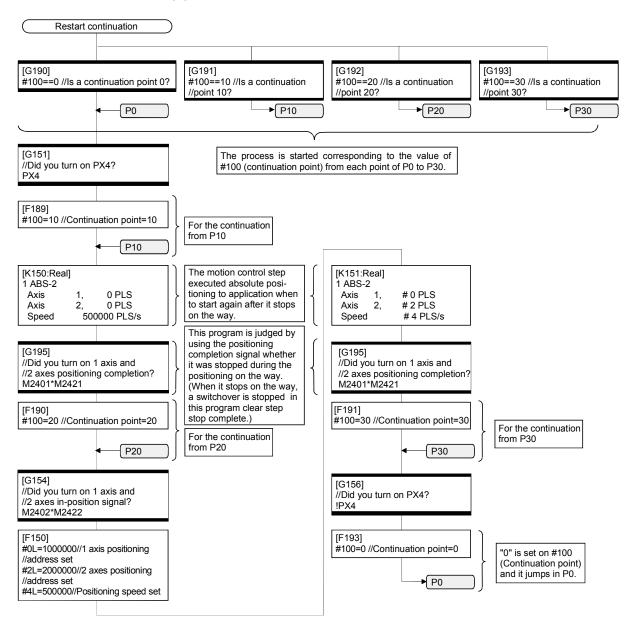
	ī	1	ı	ı			
No.	Program name	Task	Automatic operation	Number of connective transitions	Contents of processing		
20	Main	Normal	Start	3	 This program starts automatically at the time of RUN of Q173CPU(N), and it is always executed. Watch data is taken out, and clock data read request (M9028) is turned on. "0" is set on the continuation point (#100 : user device) as an initial value. The subroutine starts a "No.160 : Re-start continuation" after all axes servo are turned on and servo on of 1 axis and 2 axes is confirmed when a forced stop is released. "No.160 : Re-start continuation" is stopped at the time of the forced stop, and actual output (PY) is turned off. 		
160	Restart continuation	Normal	Not start	3	(1) This program jumps corresponding to the value of the continuation point (#100) of the following (2) 1) to 9). #100		

(a) No.20: Main

"0" is set on the continuation point (#100) as an initial value.

The subroutine starts "No.160: Restart continuation" after all axis servo are turned on and servo on of 1 axis and 2 axes is confirmed when a forced stop is released.

(Because the next step is a shift, it becomes a subroutine start, and the next step is executed at the same time with subroutine practice, too.)


"No.160 : Restart continuation" is made to stop by the forced stop, and real output (PY) is turned off.

(Note-1): The program that a subroutine was started is made to stop if necessary when a subroutine start program is added because it does not stop.

(Note-2): Actual output is turned off if necessary.

(Note-3): The occurrence detection of servo error and so on is added to the stop condition with forced stop if necessary. When a forced stop is released, it is the structure which starts the program which does motion control from the initials again by sample program. Therefore it is the system example that motion control is resumed when a forced stop release is executed after it stops forced for while.

(b) No.160: Restart continuation

APPENDIX 2.5 Continuation execution example after the stop by the Motion SFC program

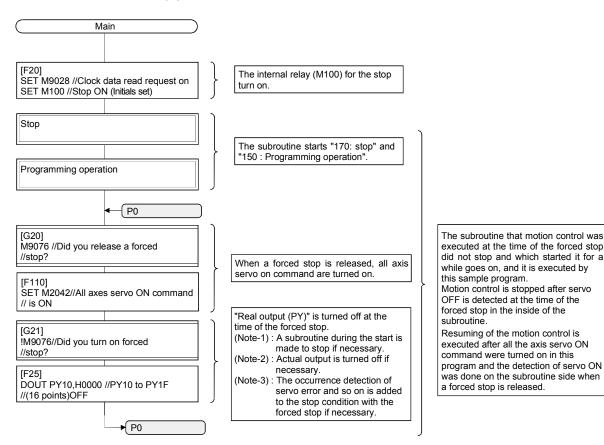
(1) The explanation of the operation

The program example that the Motion SFC program is stopped by external input signal ON for the forced stop from the input module, and it is executed continuously by external signal OFF for the stop is shown below.

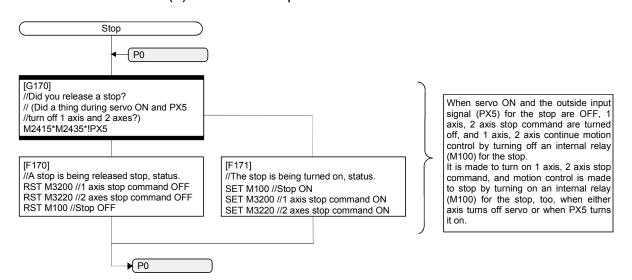
The servo is turned on by the forced stop release and the positioning control of the 2 axes liner interpolation is executed when PX4 is ON in this program. One cycle operation is completed after confirmation that PX4 became OFF.

When PX5 turns ON during the positioning operating, the positioning operation is stopped by the stop instruction and it is resumed from the interrupted positioning operation at turning PX5 on. The transition to the next step is not executed during PX5 is ON in the WAIT transition.

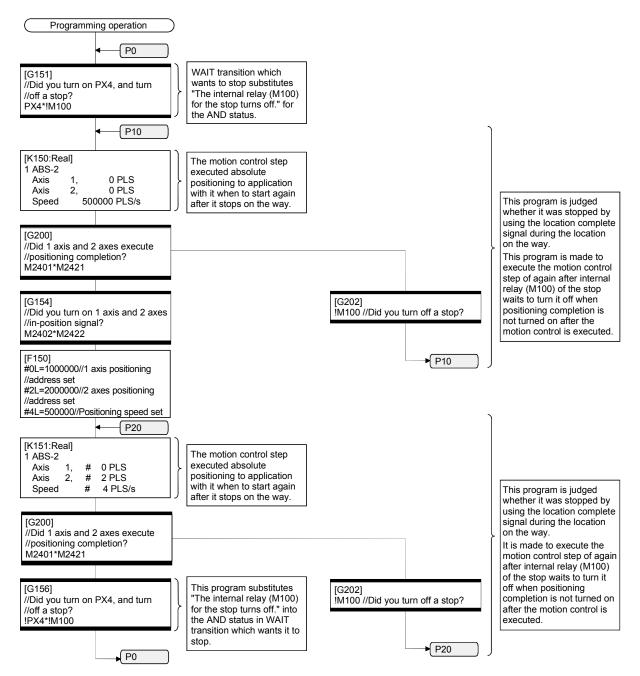
When the forced stop is executed during the positioning operating, the positioning operation is interrupted and the servomotor is stopped. It is resumed from the interrupted positioning operation when the forced stop was released next.


Continuation execution of the stop and stop after is executed by this program example by the following processing.

- (a) While PX5 turns it on, it is made to turn on a stop command (M3200+20n) and an internal relay (M100) for the stop.
- (b) While PX5 turns it off, it is made to turn off a stop command (M3200+20n) and an internal relay (M100) for the stop.
- (c) A motion control step does absolute position to cope with it when it is resumed after it stops on the way of the positioning.
- (d) A positioning completion signal (M2401+20n) is used for the decision whether it is stopped during the positioning on the way.
- (e) The motion control step is resumed after it waits to turn it off, when it was stepped during positioning.
- (f) "The internal relay (M100) for the stop turn off." is substituted for the WAIT transition condition that you must stop.


(2) Contents of processing SFC program SFC program list

No.	Program name	Task	Automatic operation	Number of connective transitions	Contents of processing
20	Main	Normal	Start	3	 This program starts automatically at the time of RUN of Q173CPU(N), and it is always executed. Watch data is taken out, and clock data read request (M9028) is turned on. The initials condition of the internal relay (M100) for the stop is turned on. The subroutine starts "No.170: Stop". The subroutine starts "No.150: Programming operation". When an forced stop is released, all axes servo are turned on. Turns off actual output (PY) at the time of the forced stop.
170	Stop	Normal	Not start	3	 (1) When a stop input signal (PX5) from the input unit is off, the treatment of the following (2) is executed, and 1 axis and 2 axes executed the following (3) during servo on in the case of the one except for it. (2) 1 axis and 2 axes stop command are turned off, and an internal relay (M100) for the stop is turned off. (3) 1 axis and 2 axes stop command are turned on, and an internal relay (M100) for the stop is turned on.
150	Program operation	Normal	Not start	3	 (1) The following motion control is executed. This program stands by until PX4 is turned on. 1 axis and 2 axes are located in (0,0) in the linear interpolation control (absolute 2 axes positioning). Positioning completion signal on of 1 axis and 2 axes are confirmed. In-position on of 1 axis and 2 axes are confirmed. 1 axis and 2 axes are located in (1000000, 2000000) in the linear control (absolute 2 axes positioning). Positioning completion signal on of 1 axis and 2 axes are confirmed. This program stands by until PX4 is turned off. When a positioning completion signal of the above (1) 3) and 6) is off, it waits to turn off, and (When a positioning was suspended on the way.) execute the motion control step (1) 2) or 5) again. Until an internal relay (M100) for the stop turns it on, it does not move to the next step of the above (1) 1) and 7).



(b) No.170: Stop

(c) No.150: Programming operation

MEMO		

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit is repaired or replaced.

[Gratis Warranty Term]

The term of warranty for Product is thirty six (36) months after your purchase or delivery of the Product to a place designated by you or forty two (42) months from the date of manufacture whichever comes first "Warranty Period". Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Gratis Warranty Range]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) A failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - 2) A failure caused by any alteration, etc. to the Product made on your side without our approval
 - 3) A failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - 4) A failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - 5) Any replacement of consumable parts (battery, fan, etc.)
 - 6) A failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - 7) A failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - 8) Any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Onerous Repair Term after Discontinuation of Production

- (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued
 - The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
- (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product; However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of Loss in Opportunity and Secondary Loss from Warranty Liability

Whether under or after the term of warranty, we assume no responsibility for any damages arisen from causes for which we are not responsible, any losses of opportunity and/or profit incurred by you due to a failure of the Product, any damages, secondary damages or compensation for accidents arisen under a specific circumstance that are foreseen or unforeseen by our company, any damages to products other than the Product, and also compensation for any replacement work, readjustment, start-up test run of local machines and the Product and any other operations conducted by you.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Precautions for Choosing the Products

- (1) For the use of our Motion controller, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in Motion controller, and a backup or fail-safe function should operate on an external system to Motion controller when any failure or malfunction occurs.
- (2) Our Motion controller is designed and manufactured as a general purpose product for use at general industries. Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.
 - In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.
 - We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

MOTION CONTROLLER Qseries SV13/SV22 (Motion SFC) Programming Manual (Q173CPU(N)/Q172CPU(N))

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

MODEL	Q173-P-SV13/22-SFC-E			
MODEL CODE	1XB781			
IB(NA)-0300042-D(1004)MEE				

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.